In-situ measurements of environmental variables at three Hawaiian deep sea coral patches

Frank Parrish
Thomas Oliver
Jeanette Clarke

NOAA NMFS
Pacific Islands Fisheries Science Center
Honolulu Hawaii
What are deep corals

- Azooxanthellate
- 50-2000+ m
- Suspension feeders
- Slow growing
- Long lived
- Independent colonies found in patches (not reef building)
Patchy nature of deep corals

- The product of the right environmental conditions over substrate suitable for coral settlement and growth.
- Can we use a comparative approach to discern the relative importance of some of these variables?
Precious coral fishery

- Corals harvested
 - Pink, gold, and black

- Fishing (all in the main islands)
 - Since 1950’s Diver collection of black coral
 - 1966-69 dredging pink & gold
 - 1972-79 submersible collection pink & gold
 - 1999-2001 Submersible collection pink & gold
Makapuu Precious coral bed

- **Precious corals**
 - Gold coral, *Kulamanamana haumeaeae* (325-624 m)
 - Bamboo, *Acanella dispar* (275-575 m)
 - Red coral, *Hemicorallium laauense* (275-575 m)
 - **Pink coral, *pleurocorallium secundum*** (225-575 m)

Local hydrography may have significant influence at small spatial scales
(Long and Baco 2013)
Physiography of coral beds

<table>
<thead>
<tr>
<th>Patch size</th>
<th>Common precious coral taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 square km</td>
<td>Gold coral: Kulamanamana haumeaae, Bamboo: Acanella dispar</td>
</tr>
<tr>
<td>2.7 square kms</td>
<td>Gold coral: Kulamanamana haumeaae, Bamboo: Acanella dispar, Red coral: Hemicorallium laauense</td>
</tr>
<tr>
<td>12.5 square kms</td>
<td>Gold coral: Kulamanamana haumeaae, Bamboo: Acanella dispar, Red coral: Hemicorallium laauense, Pink coral: Pleurocorallium secundum</td>
</tr>
</tbody>
</table>
Temperature
Flow rate
Current direction
Turbidity

Temperature
Flow rate
Center (in) and edge (out) placement
Study site sampling

<table>
<thead>
<tr>
<th>Site</th>
<th>Year</th>
<th>Duration</th>
<th>Depth m</th>
<th>Mean °C (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makapuu</td>
<td>2007</td>
<td>6 months Nov - Apr</td>
<td>415</td>
<td>8.3 (0.77)</td>
</tr>
<tr>
<td>Barbers Pinn.</td>
<td>2013</td>
<td>7 months, Dec-July</td>
<td>330</td>
<td>10.3 (1.5)</td>
</tr>
<tr>
<td>Keahole</td>
<td>2012</td>
<td>2.5 years</td>
<td>379</td>
<td>8.2 (0.39)</td>
</tr>
</tbody>
</table>

Multi year at Keahole

- **Keahole Anderra**

 - Time: 2012-07 to 2015-01
 - Data includes: Alt Speed, North, East values over the years.
Flow speed Barbers Pinnacle

Range 0.05-68.67
Mean 12.74
Sd 7.44

$R^2=0.56$
Flow speed Makapuu

Range 0.13-50.1
Mean 13.6
Sd 7.79

R² = 0.35
Flow speed Keahole

Range 0.01-44.44
Mean 4.56
Sd 4.08

\[R^2 = 0.63 \]
Flow speed

Frequency Plots

Barbers
Makapuu
Keahole

Speed cm/s
Flow and temperature Makapuu

At this scale correlations between flow and temperature were weak

◊ But the temporal spectral signals match up well at all sites
Flow and temperature – spectral plot

Changes in temperature and flow (regardless of direction) controlled by tide cycle
Tidal direction of flow
Lagged tidal effects

- Compared with Honolulu tide station
- Hourly rate of change in tidal height compared with flow speed.
- Reason for the different slopes?
 - Local oceanographic features
 - Bottom topography influencing tidal flow speed?
- Seasonal feature at Keahole?
Flow in relation to tidal height
Makapuu

- Only Makapuu looks like it is correlated with an hourly change in tide level.
- Makapuu has the least topography to effect tidal influences.
Flow (cm/s) across the patch

<table>
<thead>
<tr>
<th>Patch</th>
<th>“center”</th>
<th>mid patch</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makapuu</td>
<td>12.6</td>
<td>14.7</td>
<td>?</td>
</tr>
<tr>
<td>Barbers Pt.</td>
<td>9.6</td>
<td>13.5</td>
<td>>8.4</td>
</tr>
<tr>
<td>Keahole</td>
<td>4.8</td>
<td>2.78</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Consistent flow across the patch

- The flow spectra is consistent within and among sites.
- No consistent difference between center (in) and edge (out) of the coral patch.
Pot 41
Pot 42
Flowmeter 2
Flowmeter 1
#16 South current meter
#15 West current meter
#13 East current meter
#14 East current meter
Turbidity differs between sites
Comparing the 3 sites

- The Makapuu and Barbers sites had appreciably higher flow environments.
- At this scale temp does change with the tide but does not correlate well with flow rate.
- **Direction of flow at Makapuu site is most consistent of the three sites and also had the best correlation between tide and flow rate.**
- Flowmeters placed across the coral patch indicate variability in the flow rate but were generally consistent across temporal spectra.
- **Turbidity was 2-3 times greater at the Barber Pt. site which is close to the Makapuu site.**
Localized recruitment?
WW I S-19 scuttled 75 yrs ago
11 bamboo colonies
Mean ht 25 cm (sd 12.4)
Max 50 cm, settled 55 yrs ago
No golds, no midas
Acknowledgements
Hawaii Undersea Research Laboratory (HURL)
NMFS Deep Sea Coral Research and Technology Program
NOAA Office of Ocean Exploration and Research
NMFS Office of Science and Technology
Art work by Tyler Lum - Hanauma Bay Education Program