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Maxent predictive habitat model for the primary framework‐forming deep‐sea coral in the 
Southeast U.S., Lophelia pertusa. Warmer colors indicate greater likelihood of suitable habitat, 
determined by a cross‐validation method that determined likelihood thresholds using the ratio 
of false positive to false negative classification results when the model was tested on data left 
out of the fitting process (Kinlan et al. 2012a). 
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PREDICTIVE HABITAT 
MODELING FOR 
DEEP-SEA CORALS 
IN U.S. WATERS
I. Introduction
Predictive habitat modeling (PHM) is a cost-effective 
method for extending the range and utility of expensive 
and time consuming field efforts to identify deep-sea coral 
habitat in locations that have not been sampled. PHM 
is not intended and should not be used as a substitute 
for field surveys via remotely operated vehicles (ROVs), 
submersibles, and similar instruments. Instead, modeling 
is one component of a highly integrated process that 
includes biological surveys, oceanographic data gathering 
efforts, management and conservation actions, and new 
exploration and scientific efforts. New data collection and 
verification of model results generates feedback that allows 
for the creation of better models (as illustrated by the 
conceptual model in Figure 1). Recognition of the utility of 
regional-scale habitat suitability models for deep-sea corals 
is increasing both in domestic and international waters and 
the models have become accepted as a useful indicator of 
vulnerable marine ecosystems.

PHM complements field efforts by facilitating habitat 
predictions across large regions, and this method can 
be used to help focus limited resources in areas that 
have the highest probability of supporting deep-sea 
coral ecosystems. Predictive habitat models also provide 
important insights into the environmental conditions 
controlling deep-sea coral distribution (feedbacks in Figure 
1). Threats to deep-sea coral habitats such as climate 
change and the looming threat of ocean acidification 
reinforce the need to gain a better understanding of the 
physical, chemical, and oceanographic conditions that 
influence deep-sea coral survival. 
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In this spotlight we provide an overview of 
regional-scale modeling efforts in U.S. waters, 
some of the methods used to determine 
predicted habitat for deep-sea corals, the utility 
of these efforts for researchers and resource 
managers, and the limitations of such models.

II. Model Methodology
Predictive habitat modeling (often called 
habitat suitability modeling, ecological niche 
modeling, or species distribution modeling) 
integrates the spatial distribution of coral 
colonies with environmental data (including 
geomorphology of the seafloor and physical, 
biological, and chemical variables) to estimate 
the potential niche and distribution of deep-
sea corals. 

Most deep-sea coral PHM studies to-date have 
used “presence-only” approaches, as the vast 
majority of data on coral distribution consists 
only of records of presence (occurrence). 
The range of environmental conditions for 
known coral locations is used to determine 
an “environmental envelope” which is then 
mapped across the entire region, including 
areas where no sampling has taken place. 
This process results in an index of relative 
habitat suitability, typically ranging from 0-1 
or 0-100, that predicts the relative likelihood 
that a given area harbors deep-sea coral 
habitat. Presence-only modeling approaches 
that have been commonly used have included 
maximum entropy modeling (Maxent; e.g., 
Davies and Guinotte 2011, Rengstorf et al. 
2012, Yesson et al. 2012, Rengstorf et al. 2013, 

Figure 1. Conceptual process diagram showing the inputs and outputs of predictive habitat models for 
deep-sea corals, including feedbacks from model outputs to exploration and scientific efforts that lead to 
continual improvement in model quality, as well as informed management, conservation, and spatial 
planning actions.
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Georgian et al. 2014), Ecological-Niche Factor
Analysis (ENFA; eg., Leverette and Metaxas
2005, Bryan and Metaxas 2007, Davies et al.
2008, Dolan et al. 2008, Tittensor et al. 2009,
Taylor et al. 2013), and Genetic Algorithm for
Rule Set Production modeling (GARP; e.g.,
Guinan et al. 2009, Tong et al. 2013). Of these,
Maxent is becoming increasingly common,
as it has consistently outperformed other
presence-only techniques (Elith et al. 2006,
Tittensor et al. 2009, Tong et al. 2013).

Models that incorporate known absences
in addition to known presences are being
increasingly used to predict deep-sea
coral habitats. These “presence/absence”
approaches have included Boosted Regression
Trees (BRT; Tracey et al. 2011), Generalized
Linear Models (GLM; e.g., Woodby et al.
2009), Generalized Additive Models (GAM;
e.g., Ross and Howell 2013, Rooper et al.
2014), and logistic regression and Generalized
Estimating Equation models (GEE; e.g.,
Woodby et al. 2009). When both presences
and absences are recorded with reasonable
certainty, presence/absence models can
produce more accurate and therefore, more
useful habitat predictions. It is important
to note however, that absence data can be
misleading in models with coarse spatial
resolutions (> 200 m), as it cannot be assumed
that coral is absent from a large area unless
the entire area has been surveyed. Current
sampling methods in the deep-sea often
give us confirmation of coral absence in
only a small portion of each modeled cell. In
addition, absence data may be misleading if
the species’ distribution is not in equilibrium,
if dispersal is limiting, or due to historical
artifacts including population losses due to
human activities (Hirzel et al. 2002).

Difficulties in determining ‘true’ absences 
have led researchers to generate ensemble 

Recent trends in deep-sea 
coral modeling
1. Predictive habitat modeling for deep-

sea corals has increased in the last ten
years due to: a) improved resolution
and availability of environmental data,
b) increased quality and quantity of
coral data, c) increased recognition
that modeling is a useful and cost-
effective means to identify vulnerable
benthic habitats and d) increased
computational power and the
availability of appropriate algorithms
and software for predictive habitat
modeling.

2. For the first time, global and regional
modeling efforts can predict habitat
at scales that are biologically relevant
as well as practical for resource
management (10s of meters to 10s of
kilometers).

3. Presence-only modeling approaches
(e.g., Maxent, ENFA) have been
the most frequently used method
to model deep-sea coral habitat at
regional scales, but they do not show
probability of occurrence. Improved
sampling and analysis methods
are required to allow for presence/
absence models in the deep-sea. The
next generation of models should
incorporate measures of abundance
(e.g., biomass, number of colonies,
percent cover), and move beyond
presence-absence approaches.

4. Modeling has helped identify
important environmental correlates
of deep-sea coral distribution, which
is useful for forecasting areas where
corals are most at risk from climate
change and ocean acidification.
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models produced by using a combination 
of presence-only and presence/absence 
approaches (e.g., GAMs and Maxent; Ross 
and Howell 2013) to identify potential habitat. 
In the future, as databases improve, more 
data on deep-sea coral presence/absence 
and abundance (e.g., biomass, number of 
colonies, percent cover) will facilitate more 
sophisticated models (e.g., Guinan et al. 
2009). Models that can predict areas of high 
abundance or biodiversity hotspots are of 
particular importance to conservation and 
resource managers, who must weigh the 
biological and ecological value of different 
areas against economic costs associated with 
their protection (Ardron et al. 2014).  

Field survey efforts offer critical support to 
these improved datasets and help to avoid 
one of the primary pitfalls of presence-only 
models: important, undiscovered coral 
habitats can easily be missed because the 
presence locations are unlikely to fully 
represent the range of possible deep coral 
habitats. Verified absence data should 
always be preferred over a model prediction 
of “unsuitable habitat.” The collection of 
georeferenced, verified absence data with 
broad spatial coverage would greatly reduce 
sampling bias and help to improve the 
next generation of models. Yet, due to the 
time and expense involved, deep-sea field 
surveys are rarely randomly distributed 
spatially, introducing sampling bias that will 
always be an important consideration in the 
interpretation of model results. The adage by 
Carl Sagan that “absence of evidence is not 
the evidence of absence” is especially critical 
in interpretation of deep-sea field survey data 
and model outputs (discussed in Etnoyer 
and Morgan 2007). Habitat suitability models 
can influence spatial management decisions, 
so they should be tested for their validity, 
updated, and improved periodically.

Models also differ in the types of
environmental data they use to make
predictions. At a minimum, environmental
data usually include bathymetry (depth)
and statistics derived from bathymetry that
characterize the topography of the seafloor,
generally referred to as terrain metrics.
Other types of environmental variables
often included in models are substrate
(benthic sediment types and the distribution
of hard bottom) and oceanographic data.
Oceanographic data encompasses physical
variables (e.g., temperature, salinity, and
currents), biological variables (e.g., surface
productivity and particulate organic carbon
flux to the seafloor), and chemical variables
(e.g., pH, dissolved oxygen, and carbonate
chemistry). The importance of individual
environmental variables in determining the
distribution of deep-sea corals appears to vary
considerably both among taxa and among
regions (Table 1).

Seven environmental variables that are
consistently strong predictors across
regions and taxa include: depth, seafloor
geomorphology (slope, curvature, roughness,
changes in slope), sediment/substrate type,
carbonate chemistry, temperature, salinity,
indices of near-bottom current velocity,
and food flux to benthic environments. The
regional variation in approach and data
priority in modeling efforts often depends
in part on the types of data are available.
For example, carbonate chemistry has been
found to be among the most important
predictor variables for the global occurrence
of both scleractinian reef-forming corals
and octocorals (Davies and Guinotte 2011,
Yesson et al. 2012), but deep-water carbonate
chemistry data are limited or non-existent in
many regions. Other variables are proxies for
the actual processes driving coral distribution;
for example, near-bottom currents are thought
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Study Model Taxa Resolution Terrain Substrate Chemical Physical Biological

Northeast and Mid-Atlantic U.S.

Kinlan et al. in press Maxent Alcyonacea, Gorgonacea, Pennat-
ulacea, Sessiliflorae, Scleractinia, 
Caryophylliidae, Flabellidae

370 m Aspect, depth, SL, SL‐of‐SL, 
rugosity,

PLC , PRC, BPI

Mean grain size, % sand, 
%mud, %gravel

– Temperature, 
salinity, surface 
turbidity, DO

Surface chl. a

Bryan and Metaxas 
2007

ENFA Paragorgiidae, Primnoidae 5 km Depth, SL – – Current velocity, 
temperature

Surface chl. a

Southeast U.S.

Davies (unpub-
lished), Mienis et al. 
2014

Maxent Lophelia pertusa, Madrepora oculata, 
Enallopsammia profunda, Solenosmillia 
variabilis, Oculina varicosa

90 m, 1 
km

Depth, SL, rugosity SL-of-
SL, PLC, PRC, BPI

– ΩA, 
nitrates

Temperature, 
salinity, DO

POC

Kinlan et al. 2012a Maxent Lophelia pertusa, Madrepora oculata, 
Enallopsammia profunda, FF Scler-
actinia (exc. Oculina spp.), Non-FF 
Scleractinia, Antipatharia, Stylaste-
ridae, Pennatulacea, Alcyonacea, 
Gorgonacea, Holaxonia, Calcaxonia

370 m Depth, SL, SL-of-SL, aspect, 
rugosity, PLC, PRC, BPI

Mean grain size, % sand, 
%mud, %gravel

– Temperature, 
salinity, surface 

turbidity

Surface chl. a

Gulf of Mexico

Guinotte and Davies 
(in prep)

Maxent Lophelia pertusa, Madrepora oculata, 
Enallopsammia profunda, Solenosmillia 
variabilis, Oculina varicosa

~90 m Depth, SL, rugosity To be determined ΩA, ΩC Temperature, 
salinity, DO, sur-

face turbidity

Export POC

Georgian et al. 2014 Maxent Lophelia pertusa 5 m, 25 m Depth, SL, roughness, TPI, 
LonC, LatC, GC, eastness, 

northness

Potential hard-bottom loca-
tions from 3D seismic data

ΩA – Export POC

Kinlan et al. 2012b Maxent Lophelia pertusa, Madracis, Madrepo-
ra, Bebryce, Callogorgia, Hypnogorgia, 
Paramuriceidae, Plexauridae, Isidi-
dae, Ellisellidae, Chrysogorgiidae, 
Antipatharia, Alcyonacea, Gorgo-
nacea, Scleractinia, FF Scleractinia, 
Non-FF Scleractinia, All FF taxa

370 m Depth, SL, SL-of-SL, aspect, 
rugosity, PLC, PRC, BPI

Mean grain size, % sand, 
% mud, % gravel, poten-

tial hard-bottom locations 
interpreted from 3D 

seismic data

– Temperature, 
salinity, surface 
turbidity, DO

Surface 
chl. a

West Coast U.S.

Guinotte and Davies 
2012, 2014

Maxent Antipatharia, Scleractinia, Alcy-
oniina, Calcaxonia, Holaxonia, 
Scleraxonia

500 m Depth, SL – ΩA, ΩC, 
nitrate, 

phosphate, 
silicate

Temperature, 
salinity, DO

Export POC

Huff et al. 2013 GAM, 
GLM

Antipathes dendrochristos 90 m Depth, SL, PRC – – Temperature, sa-
linity, DO, current 

velocity,  current 
direction

Surface 
primary 

productivity 
(CPI)

Table 1. Summary of key features of the regional and global‐scale deep‐sea coral predictive habitat models discussed in this chapter, including the taxa modeled, 
the modeling approach used, the spatial resolution, and the environmental variables used as predictors. Environmental variables that were significant in models 
are italicized. Abbreviations: ENFA=Environmental Niche Factor Analysis, Maxent=Maximum Entropy, GAM=Generalized Additive Models. Variable 
abbreviations: Chl. a=chlorophyll a, CPI=Chlorophyll Persistence Index, BPI=bathymetric position index, POC=particulate organic carbon, ΩA=aragonite 
saturation state, ΩC=calcite saturation state, TPI=topographic position index, AOU=apparent oxygen utilization, TA=total alkalinity, [CO3

2‐]=carbonate ion 
concentration, DIC=dissolved inorganic carbon, lat./long.=latitude/longitude, TRI=terrain ruggedness index, DO=dissolved oxygen, SL=slope, SL‐of‐SL=slope of 
slope, PLC=plan curvature, PRC=profile curvature, LonC=longitudinal curvature, LatC=latitudinal curvature, GC=general curvature, FF=Framework Forming. 
Variables are at‐depth unless otherwise indicated (i.e., surface chlorophyll a, surface primary production, surface turbidity).



Bryan and Metaxas 
2007

ENFA Paragorgiidae, Primnoidae 5 km Depth, SL – – Current velocity, 
temperature

Surface chl. a

Alaska

Guinotte and Davies 
2013

Maxent Alcyoniina, Antipatharia, Calcaxo-
nia, Filifera, Holaxonia, Scleractin-
ia, Scleraxonia, Stolonifera

700 m Depth, SL, rugosity, BPI, 
PLC, PRC, tangential 

curvature, aspect, north-
ness, eastness, TRI, TPI, 

roughness

– ΩA, ΩC, 
nitrate, 

phosphate, 
silicate

Temperature, 
salinity, DO

Export POC

Bryan and Metaxas 
2007

ENFA Paragorgiidae, Primnoidae 5 km Depth, SL – – Current velocity, 
temperature

Surface chl. a

Rooper et al. 2016 GAM Primnoidae, Stylasteridae, all corals 
combined, Porifera 

100 m 
(Aleutian 
Islands), 

1km (Ber-
ing Sea)

Depth, SL, rugosity, lat./long., 
aspect 

Sediment type – Temperature, 
mean ocean 

current, maximum 
tidal current

Surface 
primary pro-

ductivity

Sigler et al. 2015 GAM Plexauridae,Primnoidae, Isididae, 
Paragorgiidae, Antipatharia, Pen-
natulacea, Porifera

1 km Depth, SL, lat./long. Grain size, sediment sorting – Temperature, 
current velocity

Surface 
primary 

productivity

Hawaii and U.S. Pacific Territories

Bauer et al. 2016  Maxent Calcaxonia, Holaxonia, Scleraxonia, 
gold corals, red and pink corals, 
black corals, bamboo corals,
bubblegum corals, FF and non‐FF 
stony corals, gorgonian and non‐
gorgonian soft corals

360 m Depth , SL, SL‐of‐SL , 
aspect, rugosity, total 

curvature , PLC, PRC, BPI, 
distance to shore , distance 

to seamounts

– – Temperature ,
salinity, turbid-

ity,
current velocity,
current direction,

mixed layer 
depth

Surface chl. a

Global

Davies and Guinotte 
2011

Maxent FF deep-sea corals (Enallopsammia 
rotrata, Goniocorella dumosa, 
Lophelia pertusa, Madrepora oculata, 
Solenosmillia variabilis)

~1 km Depth, SL, rugosity – TA, pH, 
[CO3

2-], 
ΩA, ΩC, 
nitrate, 

phosphate, 
silicate, 

DIC

Regional current 
flow, vertical 
flow, salinity, 
temperature, 

DO, % oxygen 
saturation

AOU, 
surface POC, 

surface 
primary 

productivity, 
POC export

Yesson et al. 2015 Maxent Antipatharia (Antipathidae, 
Aphanipathidae, Cladopathidae, 
Leiopathidae, Myriopathidae, 
Schizopathidae, Stylopathidae)

1 km Curvature, SL – TA Temperature, 
% oxygen 
saturation

Surface 
chl. a

Yesson et al. 2012 Maxent Alcyoniina, Calcaxonia, Holaxonia, 
Scleraxonia, Sessiliflorae, 
Stolonifera, Subselliflorae

~1 km Depth, SL, rugosity – TA, pH, 
[CO3

2-], 
ΩA, ΩC, 
nitrate, 

phosphate, 
silicate, 

DIC

Temperature, 
regional 

current flow, 
vertical flow, 
DO, % oxygen 

saturation, 
salinity

POC, surface 
primary 

productivity, 
POC export, 

AOU

Tittensor et al. 2009 Maxent, 
ENFA

Scleractinia corals on seamounts ~130 km Depth – TA,  ΩA, 
nitrate, 

phosphate, 
silicate, 

total DIC

Temperature, 
salinity, DO, 

regional current 
velocity, 

% oxygen 
saturation

Surface 
primary 

productivity, 
export POC

Davies et al. 2008 ENFA Lophelia pertusa 0.25°, 1° Depth, aspect, SL Hydrocarbon seeps 
and pockmarks, iceberg 

ploughmarks

TA, ΩA, 
DIC, 

nitrate, 
phosphate, 

silicate

Current velocity, 
temperature, 
salinity, DO

Surface 
primary 

productivity
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to be very important determinants of particle 
flux, coral distribution and abundance 
(White et al. 2007, Mienis et al. 2012), but 
data on bottom currents are limited. Terrain 
metrics may therefore serve as proxies 
for currents. Moreover, the importance of 
geomorphological variables such as slope 
and curvature appears to be highly scale-
dependent, with high-resolution multibeam 
bathymetry often required to reveal fine-scale 
seafloor features associated with suitable 
coral habitat. More in situ observation 
and experimentation, more consistent 
collection and integration of high-resolution 
bathymetric and seafloor characterization 
products, and better data-assimilating deep 
ocean biophysical and chemical models are 
necessary to better resolve questions about the 
primary drivers of deep-sea coral distribution 
and abundance.      

Finally, models vary in the level of spatial and 
taxonomic detail, or resolution, they convey. 
The spatial resolution of predictive habitat 
modeling is often limited by the availability 
of fine-grained spatial data for environmental 
variables. For example, the spatial scales of 
environmental data may be coarse (1,000-
10,000 meters resolution) compared to 
the resolution of multibeam bathymetry 
available in the same study area (2-40 m 
resolution, depending on depth). This issue, 
combined with the reality that high-resolution 
multibeam does not exist across entire study 
areas, often leads modelers to predict habitat 
at coarser resolutions than the multibeam 
bathymetry. Regional fisheries management 
councils, conservation organizations, and 
habitat suitability modelers seek to manage 
areas larger than the extent of fine-scale data 
that are available, so such a compromise is 

necessary. There is a need for more extensive
spatial coverage of fine-scale resolution
environmental data, and conversely, a need
for more habitat suitability studies that
operate over smaller extents. Local-scale
studies with fine-resolution data allow
researchers to incorporate locally important
drivers of species distributions, like bottom
hardness and local relief. One large boulder,
or one meter of vertical relief can make a
considerable difference in habitat quality for
deep-sea corals and sponges.

Difficulties with species identification can
inhibit taxonomic resolution: it is not always
possible to model habitat for a single coral
species because the observations are recorded
at the genus or family level. In many cases,
useful models are created by grouping
coral species at higher taxonomic levels,
ranging from genus to family, suborder, or
order. Grouping to high taxonomic levels
is often necessary from a practical resource
management perspective when managers
cannot deal with hundreds of species
models. However, careful interpretation and
assessment of predictions should be exercised
when members of those taxa occupy very
different environmental niches (e.g., Quattrini
et al. 2013). In other cases, corals may be
grouped for modeling by their functional
similarity, for example, branching stony corals
that form a rigid framework and thus form
habitat for fishes and invertebrates (e.g., Dolan
et al. 2008).

Below, we review recent and ongoing
predictive habitat modeling efforts in different
regions of the U.S.,1 providing a brief overview
of approaches, data, taxa modeled, resolution,
results, and management/conservation
applications in each region.

1There are many fine-scale PHM efforts underway or completed for deep-sea coral habitat for 
specific sites in U.S. waters. These efforts are not reviewed here.
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III. Predictive Habitat
Modeling in U.S. Regions
III.1. Northeast and Mid-Atlantic red
Over the past 5 years, NOAA’s Deep-sea 
Coral Research and Technology Program 
has supported development of a geospatial 
database of known coral presence locations 
in the Northeast and Mid-Atlantic regions 
(e.g., Packer et al. 2007, Scanlon et al. 2010, 
Packer and Dorfman 2012, Packer and Drohan 
2012, NOAA 2015). The New England Fishery 
Management Council has used these locations, 
in conjunction with primary literature, expert 
opinion, and geomorphological characteristics 
of canyons, to help identify and prioritize 
known and potential areas of deep-sea coral 
habitat (NEFMC 2012). This constitutes a first 
step toward predictive modeling and has 
helped the Council as they consider various 
alternatives for coral habitat protection. 

NOAA scientists also produced a suite of 
moderate resolution (~370 m) models for 
multiple deep-sea coral taxonomic groupings 
in the northeast and Mid-Atlantic region 
(Kinlan et al. in prep; Figures 2 and 3). The 
inclusion of multiple spatial scales was 
designed to capture biologically-relevant 
features ranging from relatively fine-scale 
topography, the presence of deep-water 
canyons, and the continental shelf break. 
Maxent models were constructed using 
presence-only data and environmental 
variables including depth, terrain metrics 
calculated at multiple spatial scales (slope, 
slope-of-slope, rugosity, plan curvature, 
profile curvature, and bathymetric position 
index), substrate (mean grain size and percent 
sand/mud/gravel of benthic sediments), 
and physical (bottom temperature, salinity, 
and surface turbidity), biological (surface 
chlorophyll-a), and chemical (dissolved 
oxygen) oceanographic variables. 

In order to improve model parsimony while
maintaining predictive power, a stepwise
model selection process was employed to

uce the final number of environmental
variables included in the models by removing
the most redundant variable remaining at each
step. The model runs from the model selection
process were ranked from best to worst by
model performance and by model complexity,
and the model run with the best average rank
was selected as the final model. To generate
model predictions in a format that can be
directly compared across taxonomic groups
and regions, Maxent outputs were classified
into habitat suitability likelihood classes using
breakpoints corresponding to ratios of the cost
for false positive errors versus the cost for false
negative errors.

Three major taxonomic groups were modeled:
stony corals (order Scleractinia), sea pens
(order Pennatulacea), and other octocorals
(orders Alcyonacea and Gorgonacea
combined). For each major taxonomic group,
two subgroups were also considered based
on suborder or family-level taxonomy. The
Gorgonacea subgroup incorporates most of
the potential habitat-forming species in this
region (Packer et al., this volume).

The models predicted extensive areas of
potential habitat on the continental slope for
all major taxonomic groups and subgroups
modeled. Highest suitability values were
concentrated in submarine canyon areas at
depths of 300-2000 m. Results were used to
identify several unexplored potential hotspots
of deep coral habitat suitability in the Mid-
Atlantic and New England canyons, and
subsequent ground-truthing cruises from
2012-2015 aboard NOAA Ship Henry Bigelow
and NOAA Ship Okeanos Explorer (Nizinski
and Shank 2012, NOAA OER, 2013, 2014,
NRDC 2014, Quattrini et al. 2015) confirmed
the existence of these hotspots (e.g., Figure
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3). Efforts are underway to improve the 
resolution and accuracy of this model using 
coral data collected during these field efforts 
and multibeam bathymetry collected as part 
of the Atlantic Canyons Undersea Mapping 
Expeditions (ACUMEN) project (NOAA OER 
2012), in a direct application of the process 
model illustrated in Figure 1. 

Predictive habitat modeling helped guide 
BOEM-funded field surveys of canyons in the 

Mid-Atlantic region in 2012 (Ross and Brooke 
2012). Using archived historical observations 
from surveys in the 1980s in conjunction with 
modern state-of-the-art multibeam, areas 
of potential hard ground and coral habitat 
were modeled from a suite of terrain and 
environmental variables within Mid-Atlantic 
canyons using the Maxent approach. This 
approach highlighted the value of local-scale, 
high-resolution models in guiding and focusing 

Figure 2. Environmental layers used in the creation of Maxent deep-sea coral predictive habitat models for the 
Northeast U.S. region. A) bathymetric depth, B) bathymetric position index (BPI) calculated at a 20 km scale, C) 
predicted annual bottom temperature, D) predicted surficial sediment mean grain size, E) slope of slope, F) surface 
turbidity. 

A B C

D E F
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Figure 3. Maxent predictive habitat model for Gorgonian Alcyonaceans in the Oceanographer, Gilbert, 
and Lydonia Canyon Complex in the Northeast U.S. region. Black crosses indicate locations of known 
coral locations discovered during a 2012 ground-truthing cruise aboard the NOAA Ship Henry
Bigelow (Nizinski and Shank 2012). FPR=False positive rate. FNR=false negative rate.

research effort within a clearly defined area 
whilst utilizing past observations. The models 
have been validated in the field and visual 
observations collected during subsequent 
cruises will be used to enhance the local-scale 
model. 

All of the models described will continue to 
be developed and refined, however they have 
already played a seminal role in regional 
fishery management. In 2015, the Mid-Atlantic 
Fishery Management Council (MAFMC 2015) 
recommended establishment of “deep-sea 
coral zones” to protect deep-sea corals from 
the impacts of bottom-tending fishing gear. 
This fishery management plan amendment 

was recently approved by the National Marine 
Fisheries Service, and will protect over 98,000 
km2 of habitat in canyons and deep-water 
areas where corals have been observed or 
where they were predicted to occur based 
on NOAA Maxent models. This was among 
the first explicit examples of deep-sea coral 
predictive habitat models playing a major 
role in U.S. fishery management conservation 
decisions, confirming the utility of PHM for 
future conservation and management efforts. 
The New England Fishery Management 
Council is expected to use similar approaches 
in a planned deep-sea coral amendment.  
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III.2. Southeast
In 2009, Davies (unpublished) created the 
first Maxent predictive habitat model in the 
Southeast U.S. Atlantic region for framework-
forming scleractinian corals (including 
records for Lophelia pertusa, Madrepora oculata, 
Enallopsammia profunda, Solenosmilia variabilis 
and Oculina varicosa). Environmental variables 
were created following procedures later 
described in Davies and Guinotte (2011) using 
the highest resolution bathymetry available 
including the National Geophysical Data 
Center’s Coastal Relief Model at 3 arc second 
(~90 meter) resolution and global bathymetry 
available at 30 arc second (~1 km) resolution 

(Becker et al. 2009). Relevant environmental 
layers were selected for the model, including 
omega aragonite (Orr et al. 2005), depth 
(Becker et al. 2009), dissolved oxygen (Garcia 
et al. 2006), salinity (Boyer et al. 2009), 
nitrate concentrations (Garcia et al. 2006), 
temperature (Boyer et al. 2009) and rugosity 
(Wilson et al. 2007). Model results from this 
effort were overlaid with existing fishery 
closures to identify areas with high habitat 
suitability that remain at risk from destructive 
fishing practices.

In 2012, NOAA produced a set of 370 meter 
resolution regional predictive habitat models 
for deep-sea coral taxonomic groups in the 

Figure 4. Maxent predictive 
habitat model for all framework-
forming Scleractinian deep-sea 
corals in a subset of the U.S. 
Southeast Atlantic. Warmer 
colors indicate greater likelihood 
of suitable habitat, determined 
by a cross-validation method that 
determined likelihood thresholds 
using the ratio of false positive to 
false negative classification results 
when the model was tested on data 
left out of the fitting process (see 
Kinlan et al. 2012b and David et 
al., this volume for details).
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Southeast U.S. (Kinlan et al. 2012a). Example 
outputs from this model are shown in Figure 
4 and in Hourigan et al. (this volume). 
Using a similar approach to that employed 
in the Northeast region, Maxent models 
were constructed using presence-only data 
and environmental variables selected from 
a set of candidate predictors. A total of 14 
taxonomic groups were modeled, including 
three important species of framework-forming 
stony corals (Lophelia pertusa, Madrepora 
oculata, and Enallopsammia profunda), an 
important framework-forming genus (Oculina 
spp.), all framework-forming stony corals as 
a group (Figure 4), non-framework-forming 
stony corals, black corals, lace corals, sea pens, 
gorgonian and non-gorgonian soft corals, and 
two suborders of gorgonian corals (Holaxonia, 
Calcaxonia). The models predicted extensive 
areas of potential framework-forming deep 
coral habitat, concentrated at depths of 100-
1000 m. Results confirmed that existing coral 
protection areas covered the majority of 
likely framework-forming deep coral habitat 
(Figure 4). The models were provided to the 
South Atlantic Fishery Management Council 
to support discussions of Ecosystem Based 
Management measures including a recent 
amendment to the Fishery Management Plan 
for Coral, Coral Reef, and Live/Hardbottom 
Habitats in the South Atlantic Region (SAFMC 
2013). 

The two Southeast models highlight the issue 
that model results can vary considerably in 
both the extent of highly suitable habitat and 
in the suitability scores of individual grid 
cells, even when similar modeling methods 
are used (i.e., Maxent). Predictor variables 
used as input in the models are likely 
responsible for these differences (e.g., seafloor 
substrate type), but the coral records used 
to determine the environmental niche also 
play an important role in determining final 
model results. Multiple independent modeling 

efforts are useful because they can highlight 
areas of high certainty (where multiple 
models agree), reveal sensitivity of model 
predictions to different assumptions, methods, 
and input data, and improve future model 
iterations. Determination of which model(s) 
more accurately predicts reality can only be 
accomplished through field validation efforts.  

III.3. Gulf of Mexico
Marine Conservation Institute and Bangor 
University are currently developing Maxent 
models for both deep-sea and mesophotic 
coral habitat in the Gulf of Mexico. The spatial 
resolution of model results is based on the 
National Geophysical Data Center’s Coastal 
Relief Model at 3 arc second (~90 meter) 
resolution. Modeling methods are similar to 
the approach used in the Southeast U.S, U.S. 
West Coast, and Alaska. The objectives of 
this work are to identify both deep-sea and 
mesophotic reef habitat that are not currently 
under protection from human activity 
including oil and gas production/accidents, 
bottom trawling, and climate change.  

The Gulf of Mexico presents unique challenges 
and opportunities for predictive coral habitat 
modeling. High-resolution seismic data that 
can be used to detect potential hard-bottom 
patches are lacking in most of the U.S. 
Exclusive Economic Zone (EEZ), but this is not 
the case in the Gulf of Mexico due to a long 
history of oil and gas exploration in the region. 
Extensive 3D seismic surveys conducted over 
several decades in large areas of the Gulf 
have recently been interpreted to provide 
high-resolution information on potential 
hardground areas that are helping to improve 
predictions of coral habitat suitability (Boland 
et al., this volume). 

In 2012, scientists at NOAA applied the 
Maxent modeling approach used in the 
Northeast and Southeast regions to develop 
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moderate spatial resolution (370 meter) 
regional models for deep-sea coral taxonomic 
groups in the northern Gulf of Mexico (Kinlan 
et al. 2012b). Maxent models were constructed 
using presence-only data and environmental 
variables selected from a suite of terrain, 
substrate (including potential hardground 
locations), and physical and biological 
oceanographic variables. Taxonomic groups 
similar to those used in the Southeast region 
were used for modeling, with an emphasis 
on predictions of key framework-forming 
species. This work has already been used in 
targeting exploration surveys and is expected 
to contribute to efforts at habitat protection, 
spatial planning, and fishery management in 
the Gulf of Mexico. 

In 2014, Georgian et al. developed high-
resolution (25 m) Maxent models predicting 
the distribution of Lophelia pertusa across a 
large region of the northern Gulf of Mexico. 
The authors used a suite of 11 environmental 
variables including depth, a number of 
terrain metrics, omega aragonite, substrate 
type, and export productivity. Substrate 
type consisted of potential hardground areas 
developed by the Bureau of Ocean Energy 
Management (Boland et al., this volume) and 
was highly predictive of L. pertusa distribution, 
demonstrating the utility of these type of 
data for future PHM efforts. The model 
was tested during a field survey aboard EV 
Nautilus by Ocean Exploration Trust in 2013 
and successfully predicted the location of two 
large L. pertusa mounds. 

III.4. U.S. Caribbean
There have been no predictive habitat models 
for deep-sea corals in the U.S. Caribbean 
(Puerto Rico, U.S. Virgin Islands, and Navassa 
Island), despite their relatively high diversity 
in the region (Cairns 1979, 2007). While several 
global-scale modeling efforts have included 

parts of the Caribbean (e.g., Tittensor et al. 
2009, Davies and Guinotte 2011), there is 
an urgent need to better characterize the 
distribution of cold-water corals throughout 
the region. 

III.5. West Coast (Washington,
Oregon, California)
Bryan and Metaxas (2007) published the first 
predictive habitat models for deep-sea corals 
(Families Paragorgiidae and Primnoidae) 
for the West Coast and Alaska. Four years 
later, in 2011, predictive habitat models 
were developed for six taxonomic groups 
of deep-sea corals (Orders Antipatharia 
and Scleractinia, Suborders Alcyoniina, 
Calcaxonia, Holaxonia and Scleraxonia) 
in the waters of Washington, Oregon and 
California (Guinotte and Davies 2012, 2014). 
The objectives of this effort were to: 1) aid 
future research and mapping efforts for 
deep-sea coral habitats, 2) Assess potential 
coral habitat suitability both within and 
outside existing bottom trawl closures (e.g., 
to inform designation and protection of 
essential fish habitat – EFH), and 3) identify 
suitable habitat in and around the region’s 
six National Marine Sanctuaries. Maxent was 
used to model deep-sea coral habitat at a 
500 m spatial resolution using coral records 
collected from a variety of sources and a 
regional database of 30 physical, chemical 
and environmental variables. Figure 5 shows 
the model results for Washington waters with 
overlays of existing fishing closures and the 
Olympic Coast National Marine Sanctuary. 
These modeling results will be used to assess 
gaps in protection afforded by existing fishery 
management closures through the Pacific 
Fishery Management Council’s periodic 
review of essential fish habitat (Huff et al. 
2013; Guinotte and Davies, 2014). 
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III.6. Alaska
Several regional-scale predictive habitat-
modeling efforts have been conducted or are 
currently underway for deep-sea coral and 
sponge habitats in Alaskan waters. Guinotte 
and Davies (2013) developed Maxent models 
for the Alaska EEZ at a spatial resolution of 
~700 m using 30 environmental, physical, 
and chemical predictor variables. Models at 
the Suborder and Order levels revealed that 
the majority of predicted suitable habitat 
for gorgonians and lace corals (Family 
Stylasteridae) occurs in the Aleutian Islands, 
and to a lesser extent the eastern Bering 
Slope, Gulf of Alaska seamounts, and the 
Fjord region and shelf break of Southeast 
Alaska. Soft corals (Suborders Alcyoniina 
and Stolonifera) additionally had predicted 

suitable habitat on the eastern Bering Sea 
Shelf. Guinotte and Davies (2013) also 
modeled a complex habitat type, coral and 
sponge “gardens” (Stone and Shotwell 2007) 
in the Aleutian Islands. While some coral 
and sponge gardens are currently protected 
from bottom-contact fishing, other areas of 
predicted suitable habitat remain open to such 
fishing. Results from this modeling effort will 
be combined with new information on the 
skeletal mineralogy of Alaska’s deep-sea corals 
(Stone et al. in prep.) and predicted changes in 
carbonate chemistry through 2100 to produce 
a spatially explicit ocean acidification risk 
assessment for Alaska’s coral resources.

NOAA’s Alaska Fisheries Science Center has 
also developed generalized additive models 
(GAMs) for coral and sponge habitat in Alaska 

Figure 5. Maxent predictive habitat 
model for all taxa (Orders: Antipatharia 
and Scleractinia; Suborders: 
Alcyoniina, Calcaxonia, Holaxonia, 
and Scleraxonia) for the Olympic Coast 
National Marine Sanctuary. Warmer 
colors indicate greater likelihood of 
suitable habitat across all taxa modeled 
(see Guinotte and Davies 2012 for 
details on likelihood). Hatched areas are 
existing trawl closures (EFH).

PREDICTIVE HABITAT MODELING FOR DEEP-SEA CORALS IN U.S. WATERS
• • •



227

that use data from bottom trawl surveys. 
Rooper et al. (2014) presented models that 
predicted presence or absence, abundance, 
and family diversity of corals and sponges 
(as opposed to presence-only models) for 
the Aleutian Islands. The predictor variables 
included remotely-sensed data, predictions 
from oceanographic models, and location-
specific data collected during trawl surveys. 
The PHM objective was to develop and 
parameterize a spatially explicit model to 
predict coral and sponge presence, abundance, 
and diversity at 100 m spatial resolution for 
the Aleutian Islands. Field validation surveys 
using towed camera systems and a stratified-
random station selection were conducted in 
2012-2014 and data are in the process of being 
analyzed. Similar models based on bottom 
trawl survey data have also been produced 
for corals and sponges in the Gulf of Alaska 
(Rooper et al. 2017). These models will be 
ground truthed using available underwater 
image data.

Using catches from trawl surveys and similar 
GAM techniques, Sigler et al. (2015) developed 
models of coral (excluding Pennatulacea), sea 
whip (Pennatulacea), and sponge distribution 
for the outer shelf and slope of the eastern 
Bering Sea. In 2014, randomized camera 
surveys were conducted to verify these 
distribution models (Rooper et al. 2016). Coral 
densities were low, but the model based on 
trawl survey data was generally reliable for 
predicting coral presence or absence in the 
camera survey. The bottom trawl survey 
models also successfully predicted sponge and 
sea whip presence or absence, but to a lesser 
degree than for coral. Presence or absence 
models of corals, sponges and sea whips were 
also constructed from the camera survey data. 
Combining these models with the distribution 
models constructed from bottom trawl survey 
data predicted the distribution of corals, 

sponges, and sea whips with better accuracy 
than the individual models did during cross-
validation. These models and associated data 
are being used by the North Pacific Fishery 
Management Council in deliberations on 
potential additional habitat protections in the 
Eastern Bering Sea.

III.7. Hawaii and U.S. Pacific
Territories
In 2015, scientists at NOAA National Centers 
for Coastal Ocean Science applied the same 
Maxent modeling approach used in the 
Northeast, Southeast, and Gulf of Mexico 
to develop moderate resolution (360 meter) 
regional models for deep-sea coral taxonomic 
groups in the Main Hawaiian Islands (Bauer 
et al. 2016). Maxent models were constructed 
using presence-only data and a suite of 
environmental variables including depth, 
terrain metrics calculated at multiple spatial 
scales, proximity to seamounts, and physical 
and biological oceanography. A total of 16 
taxonomic groups were modeled, including 
gold corals, red and pink corals, black corals 
(separated into distinct groups by depth), 
bamboo corals, bubblegum corals, framework-
forming and non-framework-forming stony 
corals, gorgonian and non-gorgonian soft 
corals, three suborders of gorgonian corals 
(Calcaxonia, Holaxonia, Scleraxonia), and 
sea pens (separated into distinct groups 
by substrate). In addition, models were 
constructed to predict high diversity areas 
likely to support ≥ 4 and ≥ 7 genera of 
deep-sea corals. For many of the taxonomic 
groups, predictions of potential habitat were 
driven by depth. These models were part 
of a comprehensive marine biogeographic 
assessment to provide data products to inform 
the Bureau of Ocean Energy Management’s 
renewable energy policy decisions in Hawaii.
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While there are many coral occurrence records 
in the Hawaiian archipelago, information from 
other U.S. Pacific Territories is sparse (Parrish 
et al., this volume). The only modeling 
results for these areas are from global-
scale efforts for 6 species of scleractinian 
reef formers (Davies and Guinotte 2011), 
octocorals (suborders Alcyoniina, Calcaxonia, 
Holaxonia, Scleraxonia, Sessiliflorae, 
Stolonifera, and Subselliflorae (Yesson et al. 
2012)), and black corals (Yesson et al. 2017). 
Both efforts modeled deep-sea coral habitat 
at a ~1 km spatial resolution using Maxent, 
global databases for coral locations, and 
30 environmental, physical, and chemical 
predictor variables.

IV. Application of Predictive
Habitat Models to Fishery
Management
In addition to helping researchers identify 
areas where coral habitat is most likely to 
be found, modeling results can be used 
in conjunction with existing fisheries 
management boundaries to help resource 
managers identify areas where potential 
deep-sea coral habitat remains at risk from 
human activity. Figure 5 shows the predicted 
distribution of several taxa of deep-sea corals 
and existing areas closed to bottom trawls to 
protect essential fish habitat for groundfish off 
Washington (Guinotte and Davies 2012, 2014). 
Commercial fishing using bottom-contact gear 
is a common practice in most U.S. regions, but 
field surveys for deep-sea corals are limited 
by the expense and extent of area that can 
be surveyed. Predictive habitat modeling 
represents a potential cost-effective means to 
fill these gaps. 

Modeling results can also be overlaid with 
coral bycatch maps to test the accuracy 

of model results. However, this type of
comparison can give conflicting results when
commercial fishers actively avoid high-relief
areas (most likely to harbor most deep-sea
corals) in order to minimize gear damage
and/or loss. Modeling results can and should
be incorporated into U.S. regional Fishery
Management Councils’ fisheries review
processes to help determine areas where
additional management measures may be
warranted or where existing boundaries need
to be amended.

For example, regional PHM results in
the Southeast U.S. Atlantic contributed to
discussions of alternatives in the development
of the SAFMC’s Coral Amendment 8 to the
Fishery Management Plan for Coral, Coral
Reef, and Live/Hardbottom Habitats in the
South Atlantic Region. This outcome resulted
in both the expansion of some Habitat Area
of Particular Concern (HAPC) boundaries
(Figure 4) to capture more high-likelihood
coral habitat, and opening of some flat bottom
areas of low likelihood to support coral habitat
(SAFMC 2013). In 2015, the Mid-Atlantic
Fishery Management Council approved the
closure of 15 submarine canyon and slope
areas to almost all bottom-contact fishing gear
specifically to protect deep-sea coral habitats
(MAFMC 2015). The results of the NOAA
deep-sea coral PHM were included in the
closure proposal and specifically used in the
identification of boundaries for these discrete
areas. Decisions like these are difficult to make
based on spatially limited field sampling
efforts alone; comprehensive regional maps
of habitat suitability produced by PHM can
greatly assist in developing and prioritizing
spatial boundaries. Similar discussions are
underway to varying degrees in other Fishery
Management Councils, including the New
England, Pacific and North Pacific Councils,
and PHM results are likely to be a useful tool
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for shaping and evaluating alternative spatial 
management and conservation measures in 
these regions.

V. Limitations of Predictive
Habitat Modeling Results
There are several limitations to predictive 
habitat modeling. Many of the variables that 
are important for coral settlement, growth 
and survival cannot be incorporated into the 
models because data on these variables do not 
exist at sufficient resolutions or are limited 
in geographic extent. This is particularly true 
for data on high-resolution current direction/
velocity, water-column data (e.g., turbidity, 
temperature, salinity, saturation state), and 
benthic substrate type (Davies and Guinotte 
2011). These variables, particularly hard 
substrata, can be patchy at small scales, and 
these alone may determine whether or not 
deep-sea corals inhabit a given location. In 
addition to predictor variables, there are 
limitations with the coral records used in 
models. The taxonomy of deep-sea coral 
records can be highly uncertain. This is 
particularly true for deep-sea coral records 
obtained from video and/or images when 
no specimens were collected for expert 
examination. Coral records obtained from 
trawl/bycatch surveys are associated with 
inherent spatial uncertainty as trawls can 
be several kilometers in length and precise 
georeferencing can be difficult depending on 
the technology used. 

Perhaps the most important question that 
arises pertains to the accuracy of these models 
for deep-sea corals. The preferred method to 
assess model accuracy is to perform robust 
field validation surveys to assess model 
performance. Field validation efforts must 
be conducted to assess the accuracy of the 
models, enable model refinement, and gauge 

the utility of these methods for determining 
deep-sea coral habitat in unsurveyed areas, 
as illustrated in Figure 1. Rooper et al. (2016) 
demonstrated a systematic field validation 
for a U.S. deep-sea coral predictive habitat 
model for the Eastern Bering Sea, and similar 
efforts are currently underway in the Aleutian 
Islands, Gulf of Mexico and Northeast 
U.S. Field validation of models should be 
integrated into the cruise plans of existing/
future NOAA deep-sea exploration and 
research. These surveys should record both 
georeferenced locations of coral presence 
(identified to the best taxonomic resolution 
possible) as well as locations of areas where 
corals have been confirmed to be absent. They 
should also be appropriately stratified so that 
areas predicted to have low, intermediate, 
and high habitat suitability are sampled 
adequately to support model calibration and 
validation. These accuracy assessments will 
guide refinement of future deep-sea coral 
predictive habitat modeling efforts, and also 
shape the appropriate use of such models 
for conservation and management purposes. 
If field validation is not possible, cross-
validation methods can be used to aid in the 
assessment of predictive model results (e.g., 
Huff et al. 2013).

VI. Conclusions and
Recommendations
Predictive habitat modeling is increasingly 
used to help identify areas that are most likely 
to harbor deep-sea coral taxa. The growth 
and adoption of these techniques in most U.S. 
regions are primarily due to improvements 
in input data quality/quantity, the low cost 
of producing the models, and the need to 
identify habitat across large spatial extents 
for management. The spatial resolution of 
model results has improved in the last five 
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years to the point where model outputs 
can be used to aid management decisions, 
and this is also spurring an increase in their 
development and subsequent use. Some of the 
regional examples reviewed here have been 
used to help target areas for field sampling 
efforts and others have been used to help 
inform U.S. regional Fishery Management 
Councils’ EFH/HAPC review processes. High-
resolution substrate data (e.g. backscatter, side 
scan sonar) can be used in conjunction with 
model results to identify areas with the highest 
probability of finding deep-sea corals, but the 
limited availability of substrate data at regional 
scales continues to hinder the accuracy of 
predictive habitat models. Model results tend 
to over predict suitable deep-sea coral habitat 
in many regions due to the absence of high-
quality substrate data and this issue will likely 
persist as the distribution of substrate is highly 
variable over small spatial scales. 
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Recommendations to 
NOAA Deep-Sea Coral 
Research and Technology 
Program:
1. Encourage all Program funded cruises

to provide presence and absence data at
relevant spatial scales to help validate and
improve predictive habitat models.

2. Develop and improve the publicly
available national database of coral
occurrences and absences for the U.S. 
EEZ, including in situ environmental data 
where possible.

3. Support the development of a publicly
available database for high-resolution
substrate data for the U.S. EEZ.

4. Ensure that the modeling results funded
by the Program are incorporated into U.S. 
regional Fishery Management Councils’
EFH/HAPC reviews and other relevant
Council processes.

5. Provide support to make the best regional 
predictive habitat model maps broadly
available to the public and federal 
agencies for marine spatial planning
purposes.

6. Convene regular working groups to
compare and synthesize the results of 
modeling efforts in each region. Multiple 
modeling efforts lead to more robust 
understanding, but require expert review,
comparison, and synthesis to identify
strengths and weaknesses of different
approaches as well as areas of consensus
and disagreement among models.

7. Ensure that field surveys, habitat
modeling, and management efforts are
efficiently integrated to take advantage of
the feedback loops illustrated in Figure 1.

8. Improve mapping and modeling of
real and potential human impacts and
integrate these maps with deep-sea coral 
PHM to identify and prioritize high risk 
areas.
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