Effects of Fishing Gear on Deep-Sea Corals and Sponges in U.S. Waters

Chapter 4 in The State of Deep-Sea Coral and Sponge Ecosystems of the United States Report

Available online: http://deepseacoraldata.noaa.gov/library.
Large red tree coral caught as bycatch in a bottom trawl survey off Alaska.
EFFECTS OF FISHING GEAR ON DEEP-SEA CORALS AND SPONGES IN U.S. WATERS

I. Introduction
Since the 1996 amendment of the Magnuson-Stevens Fishery Conservation and Management Act (MSA), there have been extensive efforts to identify and protect essential fish habitat (EFH). The 2007 MSA reauthorization further provided discretionary authority to protect areas containing deep-sea corals, recognizing these corals in their own right. Beginning around 2005-2007, management authorities in some regions of the U.S. acted to protect deep-sea corals and sponges. These species are slow-growing (Leys and Lauzon 1998, Stone and Wing 2001, Andrews et al. 2002, Prouty et al., this volume), comprise habitat for other species, and may take a long time to recover from damage (Gutt and Piepenburg 2003, Rooper et al. 2011). They are often damaged by mobile bottom-contact fishing gears, such as bottom-trawls (Chuenpagdee et al. 2003), and to a lesser extent by fixed-location gears, e.g. bottom longlines and bottom-set nets (Lumsden et al. 2007, Fuller et al. 2008). The 2007 report on the State of the Deep Coral Ecosystems of the United States notes that use of bottom-tending gears, especially bottom-trawls, is the largest threat to deep-sea coral communities (Hourigan et al. 2007). The report advocates further research on the effects of fishing on deep-sea corals to inform management decisions. This research priority was extended to sponges in NOAA’s Strategic Plan for Deep-Sea Coral and Sponge Ecosystems (NOAA 2010). Here, we briefly summarize the known interactions between fishing gear and deep-sea corals and sponges in U.S. waters.

Christopher N. Rooper1*, Peter J. Etnoyer2, Kevin L. Stierhoff3, and John V. Olson4

1 NOAA Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, Seattle, WA
* Corresponding Author: Chris.Rooper@noaa.gov
2 NOAA Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, Charleston, SC
3 NOAA Fisheries Resource Division, Southwest Fisheries Science Center, Santa Cruz, CA
4 NOAA Habitat Conservation Division, Alaska Regional Office, Anchorage, AK
II. Recent Developments in Research and Management

The effects of fishing gear on deep-sea corals and sponges are of considerable interest to fishermen, scientists, managers, environmental groups, and the general public. Since the 2007 report on the State of the Deep Coral Ecosystems of the United States, there have been efforts to:

1) Study the effects of mobile and fixed-location fishing gears on deep-sea corals and sponges;
2) Close areas where fishing may impact deep-sea corals and sponges; and
3) Modify fishing gears and practices to protect deep-sea corals and sponges.

Identifying areas where fishing overlaps the presence of deep-sea corals and sponges requires knowledge of fishing locations and deep-sea coral occurrences. Fishing locations are obtained from vessel monitoring systems (e.g., SAFMC 2010, 2013), logbooks or on-board observers. Coral and sponge occurrences are from observations and bycatch data for sponges and corals collected by the National Marine Fisheries Service (NMFS) observers (NMFS 2011, 2013) and bottom-trawl surveys (Clarke et al., this volume, Stone and Rooper, this volume). However, not all fisheries include observers, and not all observers collect bycatch data on corals and sponges (e.g. Packer et al., this volume). Yet bycatch data, anecdotal observations, and the spatial and depth overlap of fishing operations show that in all U.S. regions, some fishing is conducted in areas with deep-sea corals and sponges (Hourigan et al. 2007, NMFS 2011, NMFS 2013).

Based on these types of bycatch data, models have been developed that predict the distribution of deep sea corals and sponges (Bryan and Metaxas 2007, Sigler et al. 2015, Guinotte et al., this volume, Packer et al., this volume). These models can help identify areas of overlap of sensitive invertebrates with fishing activity. However, many of these models are for small areas, have coarse spatial and taxonomic resolutions, and are insufficiently informed by observation data.

II.1. Mobile Bottom-Contact Fishing Gear

In U.S. waters, bottom-trawls are used on the continental shelf and upper slope, typically shallower than 500 m depth. In other regions of the world, bottom trawls are also used in deeper continental slope waters (Roberts 2002, Norse et al. 2012, Clark et al. 2016).

The effects of mobile bottom-contact fishing gear on deep-sea corals are well documented (reviewed by Clark and Koslow 2007, Hourigan et al. 2007, Clark et al. 2015), but less so for their effects on sponges (Van Dolah et al. 1987, Freese 2001, Wassenberg et al. 2002, Austin et al. 2007, Hogg et al. 2010). Impacts include damage and removal of the organisms (Freese 2001, Hall-Spencer et al. 2002, NRC 2002, Reed et al. 2007), changes in community composition and productivity (Hiddink et al. 2006, Hixon and Tissot 2007), and broad-scale modification of geology (Puig et al. 2012). For example, in the Aleutian Islands, damage to corals increased with fishing intensity (Heifetz et al. 2009), with the highest damage to antipatharians (15%), hydrocorals (9%) and gorgonians (6%) (Stone 2014). Additionally, coral removal by bottom-trawls accounted for over 92% of observed coral bycatch in west coast fisheries (Whitmire and Clarke 2007).

In the Gulf of Alaska, a single pass of a bottom-trawl removed 1,000 kg of Primnoa
coral and detached 27% of the colonies (Krieger 2001). Cumulative removals of coral by bottom-trawling in Alaska, from 1997 to 1999, were estimated at 81.5 metric tons (mt) per year, totaling about 250 mt (NMFS 2004). More recently, the bycatch of corals (including sea pens and whips), bryozoans, and hydroids were reportedly 54 mt from 2003-2005 (NMFS 2011) and 35.6 mt in 2010 (NMFS 2013). Comparable figures for Alaskan sponge bycatch were 238 mt in 2003-2005 and 271 mt in 2010 (NMFS 2011, 2013).

NOAA has determined that year-round closures to mobile bottom-tending gear are particularly effective at protecting biogenic habitats comprised of deep-sea corals and sponges (NOAA 2010, Hourigan 2014). The world’s first bottom-trawl fishing closure, specifically designed to protect deep-sea corals, occurred in 1984 at Oculina Bank, a Habitat Area of Particular Concern (HAPC) off eastern Florida. In 1986, the entire Exclusive Economic Zone (EEZ) surrounding the U.S. Pacific Islands was closed to bottom-trawls and bottom-set nets and longlines. The Western Pacific Fishery Management Council had previously identified bottom-trawling by foreign fishing fleets as a threat to the region’s precious coral beds (Hourigan 2014).

Most other bottom-trawl closures have been enacted since 2005, primarily to protect EFH (Hourigan 2009, Hourigan 2014, Fig. 1). This includes bottom-trawl closures between 700 and 1,750 ftm (1,280-3,200 m) on the west coast of the continental U.S., as well as 34 additional areas including biogenic habitats, banks, ridges, and canyons in March 2006. This management action protected 336,698 km² (130,000 mi²) of marine habitat in Washington, Oregon, and California of EFH for groundfish.

In the Southeast U.S., five new areas containing *Lophelia pertusa* coral were closed to bottom-contact fishing in 2010, and these were expanded in 2015 to include newly identified coral areas. In the same year, the Mid-Atlantic Fishery Management Council became the first council to use the discretionary provision of Magnuson-Stevens Act to propose establishment of a deep-sea coral protection area encompassing more than 38,000 mi². The Deep Sea Coral Amendment¹ includes measures to restrict trawls, dredges, bottom longlines, and traps within the bounds of the protection area. Areas of the Aleutian Islands in Alaska were closed to mobile bottom-contact fishing gear in 2006 (NMFS 2010). This decreased the bycatch of corals and sponges under steady or decreasing fishing effort, until 2011 (NPFMC 2012). However, data collected through 2013 indicated an increase in bycatch of coral and sponges in the Aleutian Islands, possibly due to increased fishing effort for rockfish in the region.

The cumulative effect of these management actions between 2005 and 2010 was a six-fold increase in the total area of seafloor that restricts bottom contact fishing gear within the U.S. continental EEZ (Fig. 1). The majority of the area closures in the U.S. occurred in the Pacific and North Pacific Fishery Management Council regions, and comprised more than 1.35 million km² (530,000 mi²) of the U.S. EEZ. The cumulative area of these closures represents 22% of the continental US EEZ (2,401,232 mi²). For the most part, these closures have not been monitored to determine whether protections are effective in recovering, maintaining or increasing deep-sea coral diversity and abundance.

Modifications to mobile bottom-contact fishing gear to reduce bycatch (e.g., turtle and marine

¹ http://www.mafmc.org/actions/msb-am16
Figure 1. Cumulative areal extent of bottom closures by Fishery Management Council (FMC) region between 1982 to 2015 as a percent of EEZ in each region. Colors designate the closure type. US Regional FMCs are: GMFMC = Gulf of Mexico; SAFMC = South Atlantic; MAFMC = Mid-Atlantic; NEFMC = New England; NPFMC = North Pacific; PFMC = Pacific. The MAFMC closure (*) represents the deep-sea coral protection zones proposed in June 2015, covering 28,864 n mi². The Western Pacific Council (WPFMC) and Caribbean Council (CFMC) are not shown. The WPFMC protected the entire EEZ (1,499,972 nm²) under its jurisdiction from trawling and certain other bottom-contact fishing gears in 1983. Bottom-trawling does not occur in the CFMC region. The figure includes closures specifically designed to protect deep-sea corals and those using Essential Fish Habitat (EFH) authorities (NOAA 2011, Sutter et al. 2014). There are additional closures in place to reduce gear conflicts and other purposes, which may also protect deep-sea corals and sponges in such areas. Asterisk (*) indicates closures were proposed in 2015 and approved in 2016.
mammal excluder devices) and negative impacts on the seabed (e.g., reducing footrope or roller size on bottom-trawls) have been an active area of research within NMFS. Some of the gear modifications and restrictions have the potential to reduce impacts on deep-sea corals and sponges. For example, in Alaska, NMFS scientists have been working with flatfish bottom-trawl fisheries since 2002 to reduce bycatch and mortality of crab and other benthic invertebrates in soft substrates without negatively affecting catches of target species (Rose et al. 2010a, Rose et al. 2010b, Rose et al. 2013). In those studies, the sweeps of bottom-trawls were raised off the seafloor using disk clusters spaced at 9-m intervals along the trawl sweeps. This gear modification reduced crab mortality, since the modified sweeps passed over many of the crabs it encountered, but had no significant effect on flatfish catch. Additionally, these gear modifications reduced, by almost half, the damage to sea pens under the path of the trawl gear (Rose et al. 2010a). Working closely with the fishing industry and the North Pacific Fishery Management Council, new regulations were implemented in 2011 that required bottom-trawl sweep modifications in the eastern Bering Sea flatfish fishery. On the U.S. west coast, where footrope size restrictions were instituted to reduce catches of rockfish species (*Sebastes* spp.), trawl fishing effort has
shifted away from rugose habitats known to support corals and other sensitive benthic invertebrates (Bellman et al. 2005).

II.2. Fixed Bottom-Contact Fishing Gear

In addition to mobile fishing gear, there are many types of fixed gear used in commercial fishing, including traps or pots, bottom-set nets, and longlines. Fixed gears are typically deployed in a wide range of depths, including depths > 1,000 m. Most of these gears are in contact with the seafloor when fishing, and are often used in areas, such as rocky reefs. These areas may be most important for deep-sea corals and sponges that rely on rocky substrates for attachment.

In some areas, fixed-gears account for considerably more landings than mobile gears. For example, according to California Department of Fish and Wildlife (CDFW; formerly California Department of Fish and Game) annual landings reports (Perry et al. 2010), the total landings by traps, set lines, and set nets in southern California can outweigh landings by bottom-trawls, especially in recent years (Fig. 2). Nearly 64% of recent (2007-2011) deep-water demersal landings from Southern California are from fixed gears (longlines and pots) for sablefish, thornyhead, hagfish, and spot prawn. The remaining 35% from mobile gear were predominantly soft sediment fisheries for sea cucumber and sole (Perry et al. 2010, Etnoyer et al. 2013). Fishing with fixed-gear (Fig. 3A) is often conducted further offshore, over a wider portion of the continental shelf and slope than mobile gear (Fig. 3B), yet probably covers a smaller cumulative area (e.g., NMFS 2005).

Off southern California, and likely elsewhere, fixed-gear fisheries that target deep-water demersal species operate within the depth ranges of deep-water corals and sponges with the potential for negative interactions where overlap occurs. Fixed fishing gears can interact with corals in several ways. Pots and traps can be dropped directly on top of colonies, or dragged on the bottom during deployment and recovery. Nets can snag on rocks, or be cut loose during storms. Longlines may become entangled during recovery, or when hooked fish struggle. Incidentally, museum specimens of the precious Corallium coral were retrieved by longline fisheries surveys off the Azores in 2005 (Sampaio et al. 2009). In the U.S. Pacific Northwest, Paragorgia arborea was toppled and wrapped in longlines in the Olympic Coast National Marine Sanctuary (Brancato et al. 2007) (Fig. 4A). Derelict fishing gear has also been caught on coral in other areas, such as Southern California (Fig. 4B-D), Gulf of Mexico mesophotic reefs (Etnoyer et al. 2015), Nova Scotia, Canada (Mortensen et al. 2005), and in parts of the northeast Atlantic Ocean (Sampaio et al. 2012).

There are, however, few peer-reviewed studies that rigorously examine the effects of fixed-gear fisheries on deep corals and sponges. A recent study of small-scale, shallow (< 25 m) artisanal fisheries in Mexico found that bycatch rates were negligible for traps and gillnets – less than 0.5 kg (0.12 kg of gorgonians and 0.37 kg for sponges) for each $1,000 of revenue generated by the fishery catch – while bycatch rates of habitat-forming invertebrates (as a percentage of total catch) were ~20% for set gillnets and close to zero for traps (Shester and Micheli 2011). Damage and removal of 17% of shallow-water gorgonian corals within a meter of a set net was observed, while damage was minimal and removals were zero for traps. Although the impacted areas were relatively small for these gear types, the cumulative impact may
Figure 3A. Distribution of demersal landings between 2007 and 2011 for deep-water fixed gear fisheries from California Department of Fish and Wildlife catch blocks in the southern California Bight (Perry et al. 2010; Perry et al. unpublished data). Also shown are the locations of gorgonian octocorals observed during remotely operated vehicle surveys since 2006 (NOAA 2015).
Figure 3B. Distribution of demersal landings between 2007 and 2011 for deep-water bottom-trawls from California Department of Fish and Wildlife catch blocks in the southern California Bight (Perry et al. 2010; Perry et al. unpublished data). Also shown are the locations of stony corals from surveys since 2006 (NOAA 2015).
be substantial given the large number of participants in the fisheries. In the Atlantic Ocean off Canada, a review of observer data indicated that the rate of coral occurrence in longline sets (13%) was higher than that of either gillnets (7%), trawls (4%), or crab pots (0%) (Edinger et al. 2007).

In the U.S., much of the data on bycatch rates for fixed gears comes from fishery-independent surveys. For example, the catch rates for gorgonian corals in the Alaska longline survey that operates annually at stations on the slope of the eastern Bering Sea suggest very low rates of bycatch for corals and sponges (~2-4 coral colonies or sponges per station occupied by the survey, Fig. 5).

Although some anecdotal evidence exists, there is generally less data available from U.S. fisheries to compare damage rates to coral and sponge habitat by fixed and mobile fishing gear. The most comprehensive study to date looked at damage rates in areas of

Figure 4. Images of longline and trap gear from remotely operated vehicle surveys on the US West Coast: A) Bubblegum coral (*Paragorgia arborea*) entangled in longline gear at ~200 m depth in Olympic Coast National Marine Sanctuary (OCNMS; Brancato et al. 2007); B) Scleractinian coral (*Lophelia pertusa*) colonies with yellow polypropylene line, possibly from an anchor line, or a buoy line on fixed gear; C) trap gear (center) and netting (lower right) adjacent to a purple sea fan (*Eugorgia rubens*); and D) a section of mesh from a trawl net wrapped around *Lophelia pertusa* rubble. Photo A is courtesy of NOAA OCNMS. Photos B-D are courtesy of NMFS, Southwest Fisheries Science Center.
the central Aleutian Islands that were only fished with fixed gear (pots and longlines) and found damage rates to be higher, but not significantly higher than damage rates in unfished areas (Heifetz et al. 2009). Removals of corals and sponges in Alaska by longline fisheries between 2003 and 2005 were estimated at 14 mt and 6 mt respectively, but these values constituted a minor fraction of the target species catch (NMFS 2011). Removals by pot fishing accounted for a negligible amount of coral bycatch and only 1 mt of sponge removal during the same time period.

Removals of corals and sponges by fixed gears occur in other regions as well, but some of the evidence is anecdotal. For example, bamboo corals (*Isidella* sp.) have been reported in sablefish pots off California (S. Risherman, Marine Applied Research and Exploration, pers. comm.). *Paragorgia* bubblegum corals have been observed decorating the ceilings of salmon shacks in Neah Bay, Washington (P. Etnoyer, pers. obs.). Large black corals have been retrieved from trawl nets in Alaska, then polished and carved into decorative artifacts or jewelry (P. Etnoyer, pers. comm.).

In some places, derelict fishing gear may also damage deep-sea corals and sponges. During a rockfish study in the Aleutian Islands in 2004, a juvenile rockfish was observed residing in a tangle of derelict longline gear (Rooper et al. 2007). During that study, 4.29 ha of seafloor was observed with an underwater video camera and three separate observations of derelict longline gear were observed among corals and sponges.

Figure 5. Catch (mean number of colonies ± SE) of coral and sponge taxa in the Alaska Fisheries Science Center biennial longline survey of the eastern Bering Sea continental slope from 1997-2011. Data are available from the Alaska Fisheries Information Network (AKFIN, www.akfin.org).
Observations from remotely operated vehicles (ROVs) of derelict fixed gear in areas with deep-sea corals and sponges have also been documented in the northern Gulf of Mexico, where injuries to gorgonian octocorals were attributed to the snapper and grouper fisheries that comprise the reef-fishery (Etnoyer et al. 2015).

In the U.S., many areas have been closed to fishing to reduce the impacts of fixed gears on seabed habitats. For example, fifteen seamounts off the U.S. west coast and Alaska have been closed to all bottom-contact fishing gears since 2006, and a total of 7,020 m² were restricted. Other examples include “Piggy Bank” and “The Footprint” essential fish habitat area in the Channel Islands National Marine Sanctuary, which harbors abundant coral and sponge species (Yoklavich et al. 2011, 2013), that are now protected from bottom fishing of all types. Still, enforcement of these restrictions remains a challenge (C. Mobley, NOAA pers. comm.).

In a review of the impacts of gear on sensitive seabed habitats in the Southeast U.S., Barnett (2001) recommended excluding the use of bottom longlines in the vicinity of coral reefs due to their potential for entanglement. In this region, the use of bottom longlines, pots, and traps, as well as mobile gears is not allowed in the Oculina Banks HAPC, as well as in the larger deep-water Coral HAPCs, except in Golden Crab Allowable Fishing Areas or Shrimp Fishery Access Areas. We are not aware of any efforts to modify fixed bottom-contact gear to reduce their impacts.

III. Rationale for Closures

It is important to recognize that most, if not all of the management actions and research on the interactions between fisheries and sensitive fauna have aimed to protect corals and sponges while maintaining or enhancing existing fisheries. In some cases, such as with Oculina Banks and the *Lophelia* reefs in the southeast U.S., the reef-like structure provided by a single coral species has been the impetus for protection measures. In others, such as the “coral gardens” in Alaska, management actions have focused on groups of taxa (such as groups of corals and sponges separately) rather than trying to protect an area for a particular species. Corals and sponges have also benefitted from research and management actions that were driven by management issues for other species. For example, trawl modifications to reduce bycatch of overfished species (as in the west coast footrope restrictions example above) or non-target species (as in the Alaska crab example above).

In the Gulf of Mexico, *Lophelia* reefs provide habitat for golden crab (*Chaceon fenneri*), which is fished using traps strung together and recovered from the seafloor by grappling hook. The deep-sea red crab (*Chaceon quinquedens*) can aggregate in large colonies of *Madrepora oculata* as deep as 1,000 m in the Gulf of Mexico (Boland et al., this volume). The fisheries for these species are not well developed in the Gulf of Mexico, but they do represent an emerging concern. The South Atlantic Fishery Management Council designated allowable fishing areas for golden crab pot fisheries during the establishment of Deepwater Coral HAPCs.

IV. Knowledge Gaps and Future Challenges

In most regions of the U.S., methods have been developed and employed to study the effects or anticipated effects of mobile bottom-tending fishing gear. Most of this
knowledge has been gained in response to the EFH management mandate under the 1996 amendment of the MSA, which emphasizes an ecosystem approach to management. In the last five years, the NMFS, in partnership with the fishing industry, has better characterized where fishing with bottom-tending gears is likely to occur. The extent that fishing overlaps with deep-sea coral and sponges is determined by the distribution of these organisms and fishing effort. For fisheries with observer programs, additional information on the locations and amounts of bycatch can provide some indication of the extent of interactions between fishing gear and these organisms. There is little information, however, on the relationship between bycatch observed on the vessel and the actual impact or encounter rates with corals and sponges on the seafloor. These impacts will vary among gear types, species assemblages, and seabed types. However, the effects of fixed gear on corals and sponges are poorly studied in most regions.

A better understanding of the effects of fixed fishing gear on deep corals and sponges will come as more available data on the spatial extent contacted by this gear during fishing is revealed. With this information, the footprints of the various fixed gear types, and thus the area of the impacted seafloor can be calculated. There are also estimates of the bycatch of deep-sea corals and sponges from fishing gears from mandatory observer programs in Alaska (NMFS 2011). Still unknown is the performance of the gear during setting, fishing, and retrieval, and the amount of derelict gear that remains on the seafloor. We need to better understand the interactions between deep demersal target species, the gear types being used to fish them, and the types of corals and sponges occurring in fishing areas before we can develop optimal measures to protect these sensitive ecosystems while maintaining sustainable fisheries.

A second unknown is the degree to which the closed areas aid the recovery of damaged deep corals and sponges. Few studies quantify the densities, diversities, and distributions of deep-sea corals and sponges before and after areas are closed. Althaus et al. (2009) studied stony coral habitats and associated megabenthic invertebrate assemblages on seamounts off Tasmania and found no clear signal of recovery after five years for habitats damaged by bottom-trawling; invertebrate communities remained impoverished, comprising fewer species at reduced densities than untrawled areas. Similarly, Williams et al. (2010) found no evidence of recovery in trawled seamount areas 5-10 years after protection in Australian and New Zealand. They concluded that the resilience of seamount ecosystems, dominated by corals, is low compared to most other marine systems disturbed by bottom-trawling. Studies to determine how quickly damaged ecosystems on the continental shelf and slope of the U.S. recover after a closure could inform optimal strategies for protecting areas and monitoring recoveries.

V. Future Research and Technology

Studies are needed that research pot and longline gear dynamics during deployment, fishing, and retrieval operations. These studies should be based on direct observation, remote sensing, or both. A number of new technologies may provide direct observations. Cameras on ROVs have been used to observe longline gear during fishing activities, but not during deployment or retrieval (K. L. Yamanaka, Department of Fisheries and Oceans, Canada, pers. comm.). Advances in camera technologies have also facilitated
observations. For example, researchers in the Australian Antarctic Division developed a camera system to collect video images periodically during longline deployments and retrievals (Kilpatrick et al. 2011). A modified version of the camera system is being developed at the Alaska Fisheries Science Center to deploy on commercial longline and pot gear. The intention is to collect stereoscopic images to measure objects and fish, and estimate the area that is contacted by the fishing gear during setting, deployment, and retrieval.

Multiple studies examined changes in coral and sponge communities in closed areas where trawling previously occurred (e.g. Freese 2001, Heifetz et al. 2009). In the Gulf of Alaska, there was no indication of sponge recovery after experimental trawling when the damaged sites were revisited a year later. These sites should be sampled on appropriate time and space scales to evaluate the recovery processes and periods. Following area closures off Oregon, the bycatch of coral appears to have declined for some fisheries (Fig. 6).

However, it is unclear if bycatch reductions are due to area closures, gear restrictions, changes in abundances and distributions of coral and target species, or other factors that may influence fishing behavior (PFMC 2012). Few studies have examined differences in
the community structure of deep-sea corals and sponges “before and after” area closures, or demonstrated how long and how many of these closures are needed to maintain the ecosystem services that deep-sea coral and sponge ecosystems provide.

VI. Conclusion
Since publication of the report on the State of Deep Coral Ecosystems of the United States in 2007, there have been a limited number of studies of the effects of fishing activity on deep-sea corals and sponges. In the U.S., most studies have focused on the effects of mobile fishing gear. However, studies are also needed on the likely, but perhaps lesser, effects of fixed-gears. Information from observer programs and scientific surveys have been instrumental in the identification of areas where high coral and sponge bycatch is occurring and for designating closed areas. Bycatch of non-target species has driven the development of fishing gear modifications, which has reduced their impacts on deep-sea corals and sponges.

VII. Acknowledgements
Thanks to Curt Whitmire, Janet Mason, Wayne Palsson, David Demer, and Gerard DiNardo for helpful reviews of this manuscript. Stephanie Nehasil conducted the analysis of CDFW landings data used to create Figure 3. Thank you to Chris Lunsford and Cara Rodgveller for providing data from the AFSC longline survey, to Enrique Salgado for assistance with Figures 2, 3, and 4; John Butler and the SWFSC ROV team collected the images used in Figure 4. Special thanks to Catherine Polk for her gracious assistance with the document layout.

VIII. Literature Cited

EFFECTS OF FISHING GEAR ON DEEP-SEA CORALS AND SPONGES IN U.S. WATERS

National Marine Fisheries Service (NMFS) (2010) Alaska Essential Fish Habitat (EFH) 5-year Review for 2010
EFFECTS OF FISHING GEAR ON DEEP-SEA CORALS AND SPONGES IN U.S. WATERS

Rose CS, Gauvin JR, Hammond CF (2010b) Effective herding of flatfish by cables with minimal seafloor contact. Fish Bull 108:136-144

Rose CS, Hammond CF, Stoner AW, Munk JE, Gauvin JR (2013) Quantification and reduction of unobserved mortality rates for snow, southern Tanner, and red king crabs (*Chionoecetes opilio*, *C. bairdi*, and *Paralithodes camtschaticus*) after encounters with trawls on the seafloor. Fish Bull 111

South Atlantic Fishery Management Council (SAFMC) (2010) Comprehensive Ecosystem-Based Amendment 1. In: Council SAFM (ed)

