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POPULATION 
CONNECTIVITY OF 
DEEP-SEA CORALS

I. Introduction
Identifying the scale of dispersal among habitats 
has been a challenge in marine ecology for decades 
(Grantham et al. 2003, Kinlan and Gaines 2003, Hixon 
2011). Unlike terrestrial habitats in which barriers to 
dispersal may be obvious (e.g. mountain ranges, rivers), 
few absolute barriers to dispersal are recognizable in the 
sea. Additionally, most marine species have complex life 
cycles in which juveniles are more mobile than adults. As 
such, the dynamics of populations may involve processes 
in distant habitats that are coupled by a transport 
mechanism. Studies of population connectivity try to 
quantify the transport, or dispersal of individuals, among 
geographically separated populations. For benthic marine 
species, such as corals and demersal fishes, colonization 
of new populations occurs primarily by dispersal of 
larvae (Figure 1; Shank 2010). Successful dispersal and 
recruitment, followed by maturation and reproduction of 
these new migrants ensures individuals contribute to the 
gene pool (Hedgecock 2007). Thus, successful dispersal 
links and cohesively maintains spatially separated sub-
populations. At shorter time scales (tens to hundreds 
of years), connectivity regulates community structure 
by influencing the genetic composition, diversity and 
demographic stability of the population, whereas at longer 
time scales (thousands of years), geographic distributions 
are affected (McClain and Hardy 2010). Alternatively, 
populations may become extinct or speciation may occur 
if connectivity ceases (Cowen et al. 2007). Therefore, the 
genetic exchange of individuals between populations is 
fundamental to the short-term resilience and long-term 
maintenance of the species. However, for the vast majority 
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of marine species, population connectivity 
remains poorly understood.

To effectively manage marine species, 
knowledge of the spatial scale at which 
populations are connected is beneficial 
(Palumbi 2003, Fogarty and Botsford 2007). 
Ecosystems within the deep sea often occur 
over large geographic scales, yet are spatially 
fragmented across the entire range with 
stretches of unsuitable habitat separating 
prime habitat patches (e.g. cold-water coral 
reefs, methane seeps, hydrothermal vents). 
Habitat fragmentation may escalate with 
increasing resource exploitation (e.g. Hilário et 
al. 2015). The ecological patterns observed in 

many deep-sea ecosystems can be explained 
by metapopulation dynamics as conceived 
by Levins (1969). Under this scenario, species 
occur within patchy habitats that undergo 
local extinction and recolonization and those 
patches are connected via dispersal and 
migration. The persistence, or viability, of the 
metapopulation increases as the availability 
of suitable habitat patches increases, local 
extinction decreases, and migration/dispersal 
between patches increases. In local deep-
sea communities, the regional distributions 
of each species may be composed of  
metapopulations that are influenced by a 
balance among global-scale, landscape-scale 
and small scale dynamics (Levins et al. 2001).

Figure 1. Diagrammatic representation of potential physical (hydrodynamics, depth) and biological 
(reproduction, larval behavior, settlement) forces that may influence dispersal, colonization, and genetic 
connectivity among deep-sea coral populations. (reprinted from Shank 2010, Oceanography; 1).
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Spatial management tools, such as networks 
of marine protected areas or reserves have 
the potential to protect the entire ecosystem, 
including nursery grounds, adult habitats, 
food sources, etc. Success of these protective 
measures relies at least partially upon 
estimates of dispersal rates across reserve 
boundaries (Botsford et al. 2003, Hilborn et al. 
2004). For example, a population may be more 
vulnerable to human activities if it is not likely 
to receive recruits from other populations 
(e.g., self-sustaining populations, where only 
larvae produced within the population settle 
in the population). Alternatively, if larvae 
produced within a given population disperse 
to other populations, that population may 
be an important larval “source” that could 
rescue depleted populations (Pulliam 1988). 
Identifying source sub-populations is vitally 
important to management and conservation 
plans. Estimates of connectivity provide the 
relative scale at which a protected area may 
function. Such information may be utilized 
to optimize the placement of protected areas 
and to estimate the potential impacts to 
recruitment outside protected area boundaries 
(Palumbi 2001, Gaines et al. 2010).

Biological and physical processes influence 
larval dispersal (Cowen et al. 2007, Paternello 
et al. 2007, Galarza et al. 2009, Cowen and 
Sponaugle 2009, Sivasundar and Palumbi 
2010, Mokhtar-Jamaï et al. 2011, Woodson et 
al. 2012). While biological attributes, such as 
timing of reproduction, larval behavior (e.g., 
swimming, vertical migrations), buoyancy, 
and physiology (e.g., feeding), affect larval 
survivorship and dispersal distances, physical 
processes, such as prevailing currents, eddies, 
recirculating flows, bottom topography and 
upwelling, can enhance or constrain larval 
movement (Figure 1; Shank 2010). Factors such 
as distance from a spawning site, advection 
and diffusion, and high mortality rates, all 

influence the number of larvae present in the 
water column (Cowen and Sponaugle 2009, 
Rosser 2015). The combined influences of 
these biological and physical parameters may 
either promote dispersal of larvae over great 
distances (i.e. create dispersal corridors), or 
constrain population connectivity by isolating 
some populations from others (i.e. create 
barriers to dispersal).

Due to small larval sizes and the immense 
volume of the oceans into which larvae 
disperse, measurements of dispersal distances 
are difficult and tracking of spawning events 
can be quite challenging (Gawarkiewicz et 
al. 2007). Life history traits, such as pelagic 
larval duration, have been used as a proxy for 
dispersal distances. Pelagic larval duration 
correlated well with estimates of dispersal 
for some species (Bohonak 1999, Shanks et al. 
2003). However, there are numerous examples 
where no relationship between pelagic larval 
duration and dispersal distance was observed 
(e.g. Severance and Karl 2006, Miller and Ayre 
2008, Weersing and Toonen 2009, Galarza et 
al. 2009). Although the validity of correlation 
between pelagic larval duration and dispersal 
potential remains equivocal, it may at least 
set an upper bound on dispersal distance 
(Selkoe and Toonen 2011). For the cold-seep 
dwelling mussel “Bathymodiolus” childressi and 
an associated gastropod, Bathynerita naticoidea, 
larvae were detected in surface currents, 
suggesting larvae migrate hundreds of meters 
above the sea floor, allowing greater dispersal 
in faster surface currents (Arellano et al. 2014). 
Unfortunately, for the majority of deep-sea 
coral species, knowledge of larval duration 
and behavior such as swimming ability is 
completely absent. In a review of data on 
pelagic larval durations in deep-sea taxa, a 
total of 21 species have been characterized. 
Of these, only three were cnidarian species 
(Hilário et al. 2015). In fact, knowledge of basic 
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types of reproduction in deep-sea cnidarians is 
scarce. For example, of the 615 known deep-
sea scleractinian coral species (Cairns 2007), 
reports on various aspects of reproduction 
have been ascertained for only 15 species 
(Waller 2005, Mercier et al. 2011). The 
structure-forming scleractinian corals Lophelia 
pertusa and Oculina varicosa are seasonal 
broadcast spawning species that release 
gametes into the water column (Brooke and 
Young 2003, Waller and Tyler 2005, Brooke 
and Järnegren 2013). In contrast, hydrocorals 
in the family Stylasteridae, often an important 
structural component of deep-sea coral 
gardens (Stone 2006, Lindner et al. 2008), have 
a reproductive strategy that involves brooded 
larvae with a short planktonic duration, which 
may limit larval dispersal potential (Brooke 
and Stone 2007). Similarly, Corallium rubrum, 
a precious coral with a wide bathymetric 
distribution, also broods larvae and releases 
well-developed, competent larvae (Abbiati 
et al. 2010). In accordance with brooded 
larvae, effective dispersal appears restricted 
(Ledoux et al. 2010a, Constantini and Abbiati 
2015), and shallow water populations are 
genetically structured at a scale of tens of 
meters (Ledoux et al. 2010b, Abbiati et al. 2010, 
Aurelle et al. 2011, Aurelle and Ledoux 2013). 
Many octocorals broadcast gametes into the 
water column annually, relying on external 
fertilization and larvae with an extended 
planktonic development phase (Waller and 
Baco 2007, Kahng et al. 2011, Mercier and 
Hamel 2011, Watling et al. 2011, Waller et 
al. 2014, Nonaka et al., in press, Feehan and 
Waller 2015), so greater dispersal potential 
may be expected. Identification of newly-
settled individuals is also extremely difficult, 
and in situ measures of recruitment in deep 
sea corals are limited (Grigg 1988, Thresher et 
al. 2011, Lacharite and Metaxas 2013). 

Traditional methods such as stock assessments 
or analysis of morphological differences 
between populations have been used to 
define conservation management units and 
potential larval sources. However, potential 
for connectivity between geographically 
separated populations that do not appear 
to differ morphologically does not mean 
active exchange of larvae is occurring. In 
fact, populations may have been isolated 
for thousands of years or more yet remain 
morphologically similar, resulting in 
genetically differentiated sibling species (see 
Knowlton 1993). Thus, sampling organisms 
from different sites and indirectly measuring 
connectivity using genetic techniques may 
be the only practical way to understand past 
and present connections (Palumbi 2003, Shank 
2010). 

II. Genetic Methods
Use of molecular techniques has changed 
our view of population structuring 
and management. Molecular data have 
demonstrated that a single management 
unit with a homogeneous, wide-ranging 
distribution is not necessarily the best 
management/conservation model (Ayre and 
Hughes 2000, Swearer et al. 2002, Jones et 
al. 2005, Almany et al. 2007). For example, 
the scale over which populations of shallow-
water scleractinian corals are differentiated 
can range from 25 to 7,500 km (Baums 2008), 
and may involve differentiation with depth 
(Serrano et al. 2014). A heterogeneous spatial 
mosaic of multiple units with varying amounts 
of genetic structure may better describe what 
is found in nature. Researchers must properly 
sample geographic populations, consult 
taxonomists, use appropriate genetic markers 
(e.g., mitochondrial or nuclear DNA), and 
consult theoretical models to ascertain the 
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genetic structure of a species’ populations 
(Pante et al. 2015a).

Over broad geographic scales (e.g., entire 
ocean basins), mitochondrial DNA markers 
are often employed to assess connectivity. For 
most animals, mitochondrial DNA is inherited 
maternally. Thus, only one copy of each gene 
exists in an individual. Mitochondrial DNA 
markers provide some of the most well-known 
examples of geographic breaks in population 
connectivity among shallow water marine 
species such as oysters, horseshoe crabs, and 
black sea bass along the east coast of Florida 
(Avise 1992). Mitochondrial DNA markers 
have also been useful in identifying closely 
related (sibling) or morphologically similar 
(cryptic) species, both of which commonly 
occur in the deep sea (Rogers 2002). However, 
mitochondrial DNA evolves at a slow rate in 
corals (50-100 times slower than most animals) 
and generally does not provide species-level 
resolution (France and Hoover 2002, Shearer 
et al. 2002, Hellberg 2007, McFadden et al. 
2011, Baco and Cairns 2012). This slow rate of 
mitochondrial DNA sequence evolution has 
impeded studies of connectivity in corals (e.g., 
van Oppen and Gates 2006, Eytan et al. 2009), 
where more variable nuclear DNA markers 
are necessary to assess connectivity.

Realized average dispersal of an organism 
over its entire life cycle (planktonic larval 
stage, settlement, maturation) can be 
estimated from nuclear markers such as 
microsatellites (Neigel 2002). Microsatellite 
markers refer to regions of DNA that include 
adjacent repeats of several nucleotide bases. 
Microsatellites have a higher mutation rate 
than mitochondrial DNA, so often reflect 
connectivity on more recent time scales. 
However, unlike mitochondrial DNA, 
nuclear markers like microsatellites are 
inherited from both parents, so individuals 

have two copies of each nuclear gene, called 
alleles, which are the building blocks that 
populations utilize to adapt and evolve in 
changing environments. These alleles may 
differ in length due to differences in the 
number of times the nucleotide bases are 
repeated. When the alleles are identical, they 
are termed homozygous, different alleles are 
heterozygous. Often, these population-level 
molecular markers are species-specific and 
highly variable. Utilization of rapidly-evolving 
genetic markers with many alleles allows one 
to decipher the unique genetic makeup of each 
individual. Although the initial cost of analysis 
is higher, results with resolution to the level 
of individuals and parentage is often worth 
the expense. Markers with high specificity 
and variability are utilized to assess family 
relationships and clonality in organisms, 
two attributes that complicate the genetic 
signatures of cold-water coral populations.

One of the most important applications 
of population genetic data is to determine 
the level of genetic structuring within and 
between populations. Genetic structure within 
a species can range from very weak, where 
exchange of individuals is common (i.e., high 
connectivity), to strong genetic structuring, 
where exchange of individuals is more 
rare (i.e., low connectivity, moving toward 
isolation of populations; reviewed by Palumbi 
2003, Hedgecock 2007, Cowen and Sponaugle 
2009). Genetic estimates of connectivity result 
from counting differences in DNA sequences 
or examining the variance in allele frequencies 
between populations that accumulate 
when connectivity is low or nonexistent 
(see below). When genetic structuring is 
detected, examination of the physical or 
biological parameters that may be correlated 
to genetic differentiation may provide clues 
to the processes that act to determine spatial 
connections among populations.
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Population geneticists also attempt to decipher 
patterns of genetic connectivity indirectly 
through the application of theoretical 
models of population structure (Hedgecock 
2007). The stepping-stone model assumes 
neighboring populations are more likely to 
exchange migrants amongst themselves than 
withpopulations further away (Kimura and 
Weiss 1964). Thus, genetic distance should 
increase with geographic distance, populations 
in closer proximity will be genetically more 
similar to each other than to populations 
farther away. This pattern of connectivity, 
referred to as isolation-by-distance (Wright 
1943), creates a highly structured, genetically 
complex system (Rousset 1997). For example, 
an isolation-by-distance pattern was confirmed 
for Porites lobata populations inhabiting 
shallow reefs in the Hawaiian Archipelago 
(Polato et al. 2010). If an isolation-by-distance 
pattern of connectivity is detected, estimation 
of dispersal distances may be biologically 
meaningful (Rousset 1997, Palumbi 2003).

An indirect measure of the persistence of a 
metapopulation is genetic diversity. Genetic 
diversity covaries with the number of 
patches (sources) that can supply migrants 
(Maruyama and Kimura 1980, Vrijenhoek 
2010). Therefore, estimating genetic diversity 
within metapopulations is a proxy for the 
vulnerability of a species to extinction.

III. Connectivity in the Deep
Sea
The majority of studies of marine connectivity 
focus on shallow-water environments, 
particularly tropical reef fishes (Hixon 2011). 
Although shallow marine habitats were once 
considered open systems with ample exchange 
of larvae over large distances, it is now 
accepted that local recruitment and small-scale 

population structure are common despite the 
lack of obvious physical barriers (Cowan and 
Sponagule 2009). Genetic data have suggested 
similar results for shallow-water corals, in 
that most recruitment is local, yet occasional 
long-distance dispersal can occur across tens 
to hundreds of kilometers (Ayre and Hughes 
2000, Miller and Ayre 2008, Gorospe and Karl 
2013).

Although less is known about patterns of 
connectivity in the deep sea, recent studies 
have suggested common themes. First, similar 
to shallow populations along coastlines, 
including many coral species along the Great 
Barrier Reef (Ayre and Hughes 2004), the 
stepping stone model may be appropriate for 
many deep-sea populations, particularly those 
arranged linearly along continental margins 
(LeGoff-Vitry et al. 2004, Smith et al. 2004), 
mid-oceanic ridge axes (Coykendall et al. 2011, 
reviewed by Vrijenhoek 2010) or linear arrays 
of seamounts (Samadi et al. 2006).

In contrast, stretches of open ocean that 
interrupt a linear array of reefs (Ayre 
and Hughes 2004) or vent populations 
(Vrijenhoek 2010) may create an effective 
barrier to dispersal, and connectivity may 
decrease abruptly, creating regionally 
isolated populations. Regional differentiation 
of deep-sea fauna that inhabit continental 
slope habitats may not be limited to benthic 
organisms such as corals. Even mobile species, 
such as fishes (e.g. Helicolenus dactylopterus 
(Aboim et al. 2005), squid (Shaw et al. 1999), 
scavenging isopods (France and Kocher 
1996), and red crabs (Weinberg et al. 2003), 
show regional structuring (see Rogers 2002). 
Suggested mechanisms that may prevent 
panmixia of continental slope species 
include physical barriers (continents and 
large expanses of deep water, deep water 
sills (Cowart et al. 2013), or among back-arc 
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basins (Thaler et al. 2014)), structuring of 
the water column (density layers), rugged 
topography (canyons and seamounts) and 
oxygen minimum zones (Rogers 2002). In 
addition, species-specific life history strategies, 
especially related to spawning, may also act 
to limit exchange of individuals between 
populations (Rogers 2002). 

Shared patterns of species diversity and 
genetic structuring across unrelated but 
co-distributed species may indicate that 
oceanographic features affect connectivity of 
many species in similar ways (Cunningham 
and Collins 1998). For example, the deep-
sea scleractinian coral species Desmophyllum 
dianthus, as well as two antipatharian species, 
Antipathes robillardi and Stichopathes variabilis, 
exhibited genetic subdivision across large 
ocean expanses in the southern Pacific Ocean 
(Miller et al. 2010). Concordance among 
regional connectivity patterns of these co-
distributed species indicates that physical 
forces (e.g., prevailing currents, eddies, 
upwelling) may restrict larval dispersal among 
regions. However, no genetic subdivision 
was detected for two other coral species 
(Solenosmilia variablis, Madrepora oculata) using 
the same mitochondrial and nuclear gene 
regions (Miller et al. 2010). Conversely, using 
microsatellites instead of mitochondrial DNA, 
Becheler et al. (in review) identified distinct 
genetic populations of Madrepora oculata 
among canyons in the Bay of Biscay (Eastern 
North Atlantic Ocean), yet co-occurring 
Lophelia pertusa were panmictic. Clearly, no 
generalized connectivity pattern applies to all 
coral species.

A factor that may uniquely influence 
connectivity among deep-sea organisms is 
depth. Pronounced physiological gradients 
occur as depth increases, which could result 
in locally adapted populations and enhanced 

genetic differentiation (Rogers 2002, Zardus 
et al. 2006). This concept, known as the depth-
differentiation hypothesis (Rex and Etter 
2010), suggests that the divergent selection 
across environmental gradients may cause 
population differentiation, leading to new 
and/or cryptic deep-sea species. Depth-
related divergence has been identified in 
molluscs (e.g. Chase et al. 1998, Etter et al. 
1999, Goffredi et al. 2003, Etter et al. 2005, 
Zardus et al. 2006, Jennings et al. 2013), 
polychaetes (Lundsten et al. 2010, Schüller 
2011, Cowart et al. 2014),amphipods (France 
and Kocher 1996, stylasterid corals (Lindner 
et al. 2008), primnoid octocorals (Baco and 
Cairns 2012), and the red coral Corallium 
rubrum (Constantini et al. 2011). In other 
deep-sea corals, limited vertical larval 
dispersal has been suggested the solitary coral 
Desmophyllum dianthus, a scleractinian coral 
with a cosmopolitan distribution. Genetic 
differentiation with depth in D. dianthus was 
consistent with the stratification of deep 
water masses that entrain larvae and do not 
allow mixing among depth strata (Miller 
et al. 2011). In a study that included three 
species of octocorals in the Gulf of Mexico, 
an ecological niche model revealed little 
overlap among Callogorgia species occupying 
different depths (Quattrini et al. 2013). The 
depth differentiation hypothesis was tested 
of these species, Callogorgia delta, using 
microsatellite data, and isolation by depth was 
confirmed (Quattrini et al. 2015). Rex et al. 
(2005), using deep-sea molluscan fauna with 
bathyal and abyssal distributions as examples, 
postulate that the abyssal environment may 
create population sinks due to a decrease in 
organic carbon influx from more productive 
coastal systems. These isolated populations 
rely on bathyal populations for immigrants. 
Conversely, nine genetic breaks were 
detected in the cosmopolitan deep-sea 



REFERENCE SPECIES REGION MARKERS CONNECTIVITY IBD

Eytan et al. 2009 Oculina varicosa WNAtlantic 4 nuclear DNA 
genes Depth structured No

Thoma et al. 2009 6 octocorals, 2 
antipatharians

WNAtlantic,
NE Seamounts mtDNA No structuring, high 

connectivity NA

Cho and Shank 
2010

Asteroschema clavigerum
Ophiocreas oedipus

Ophioplinthaca abyssalis
Ophioplinthaca chelys

WNAtlantic,
NE Seamounts 2 mtDNA genes Regional seamount 

structure, depth Yes

Morrison et al. 2011 Lophelia pertusa North Atlantic 9 microsatellites
Regional structure, 

moderate connectivity 
within regions

Yes, broad 
scale

Baco and Shank 
2005

Baco et al. 2006
Corallium lauuense Central 

Pacific 3-6 microsatellites
High connectivity, 

structure between sites 
and depths

No

Baco and Cairns 
2012 Several Narella spp North Pacific 6 mtDNA markers

Narrow geographic and 
depth ranges for 

haplotypes
NA

Herrera et al. 2012 Paragorgia arborea
North Pacific, 
South Pacific, 
North Atlantic

7 mtDNA genes Regional structure NA

Quattrini et al. 2015 Callogorgia delta Gulf of 
Mexico 10 microsatellites Depth structured Yes, depth > 

distance

Table 1. Studies examining connectivity among deep-sea corals and/or deep coral communities in U.S. waters. 
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amphipod Eurythenes gryllus. In this instance, 
higher diversity was observed at abyssal 
rather than bathyl depths, thus reflecting a 
pattern contrary to the depth-differentiation 
hypothesis (Havermans et al. 2013). Clearly, 
environmental factors associated with depth 
may create important abiotic gradients that 
may influence population structuring in the 
deep sea (Quattrini et al. 2015).

IV. Connectivity Among
Deep-Sea Corals in U.S.
Waters
IV.1. North Atlantic Ocean
Genetic methods were used to assess 
connectivity patterns in several North Atlantic 
deep-sea coral species (Table 1). In the first 
of these studies, connectivity among shallow 
and deep populations of the structure-
forming coral Oculina varicosa was examined 
using three nuclear DNA sequence markers 
(Eytan et al. 2009). Oculina varicosa occurs 
most commonly at shallow depths (< 30 m). 
However, azooxanthellate colonies grow at 70 
to 100 m depth along the Oculina Banks off the 
Florida east coast (Reed 2002). Despite Federal 
protection, the Oculina Banks have been 
negatively impacted by illegal trawling and 
dredging (Reed et al. 2007). The Oculina Banks 
population was found to be distinct from 
shallow populations; therefore, depth was 
considered an important factor structuring the 
pattern of connectivity in O. varicosa (Eytan et 
al. 2009). 

Lophelia pertusa, a structure-forming coral 
species commonly found on the continental 
slope off the southeastern U.S. coast (Ross 
and Nizinski 2007) and Gulf of Mexico 
(Brooke and Schroeder 2007), has a nearly 
cosmopolitan distribution, suggesting 
substantial dispersive ability. Lophelia pertusa 

is a broadcast spawner that was originally 
thought to produce non-feeding larvae (Waller 
and Tyler 2005). Yet a recent study suggests 
larvae may feed and actively swim upwards 
during the first weeks after fertilization, a 
behavior that may allow larvae to rise above 
the benthic boundary layer and promote 
advection in stronger currents (Larsson et 
al. 2014). Swimming behavior as well as an 
estimated three to five week larval duration 
imply high dispersal potential. However, 
the spatial scales that L. pertusa larvae 
travel remains unknown, making accurate 
predictions of realized larval dispersal 
challenging. Nine microsatellites were used 
to examine patterns of genetic connectivity 
across a large portion of the geographic range 
of L. pertusa in the North Atlantic Ocean 
(Morrison et al. 2011). Four distinct genetic 
groupings corresponding to ocean regions 
were identified: Gulf of Mexico, coastal 
southeastern U.S., New England Seamounts, 
and eastern North Atlantic Ocean (Figure 
2). It is known that reproductive timing is 
offset between the eastern North Atlantic 
(Waller and Tyler 2005) and Gulf of Mexico 
(Brooke et al. 2007) L. pertusa populations. 
Whether or not regionally isolated L. pertusa 
populations represent cryptic species will 
require further morphological examination 
and biological evidence. Interestingly, 
similarities exist between zoogeographic 
patterns of deep-sea scleractinian corals 
(Cairns and Chapman 2001) and regional L. 
pertusa genetic differentiation (Morrison et 
al. 2011), suggesting that similar mechanisms 
(see above) may constrain coral larvae within 
regions. 

Although the populations of L. pertusa at 
the New England seamounts occur in a 
geographic location that could be a corridor, 
or stepping stone, for connectivity across the 
Atlantic Ocean, the seamount populations 
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were the most genetically differentiated 
based upon microsatellites, suggesting 
little connectivity (Morrison et al. 2011). 
The seamount populations appeared more 
genetically similar to populations from the 
eastern rather than western North Atlantic 
Ocean, despite occurring in closer proximity to 
the latter. These seamount populations occur 
deeper (1418-1679 m) than other populations 
sampled (140-740 m) and therefore differing 
water masses and circulation patterns may act 
as a barrier to gene flow.

For North Atlantic Ocean L. pertusa 
populations, a positive correlation between 
genetic and geographic distance was detected 
at broader scales (thousands of km), but not 
at smaller scales (Morrison et al. 2011). Since 
regional breaks in connectivity were also 
detected, deductions regarding dispersal 
distances may be compromised due to the 
likely violation of the stepping-stone model 
assumption of on-going dispersal at these 
large scales (Slatkin 1993, Garnier et al. 
2004). However, results suggest moderate 
connectivity within each of the regions. A 

Figure 2. Probability of assignment of Lophelia pertusa individuals, represented by colored vertical 
bars, to four groups based upon multi-locus genotypes using the program STRUCTURE. Populations are 
arranged from west (left) to east (right). The top bar (round 1) represents an initial run including all L. 
pertusa samples. The lower bar represents additional structuring between New England Seamounts and 
Eastern North Atlantic populations detected during a subsequent run of STRUCTURE. (Reprinted from 
Morrison et al. 2011, Conservation Genetics; 37). 

POPULATION CONNECTIVITY OF DEEP-SEA CORALS
• • •



389

POPULATION CONNECTIVITY OF DEEP-SEA CORALS
• • •

previous study of L. pertusa in the eastern 
North Atlantic Ocean also reported moderate 
connectivity (genetic cohesion) among 
European continental margin populations 
and no correlation between genetic and 
geographic distance (Le Goff-Vitry et al. 
2004). Levels of both inbreeding and asexual 
reproduction (clones) varied among European 
margin L. pertusa populations, suggesting 
that most dispersal is spatially restricted, yet 
occasional long-distance dispersal is adequate 
to maintain genetic cohesion (Le Goff-Vitry et 
al. 2004). While both studies detected genetic 
structuring (i.e., decreased connectivity) 
between continental slope and Norwegian 
fjord L. pertusa populations in the eastern 
North Atlantic, results from Morrison et al. 
(2011) suggest the magnitude of differentiation 
is less than that observed across the North 
Atlantic Ocean. 

Lophelia pertusa populations surveyed in 
both the eastern and western North Atlantic 
Ocean using microsatellites have shown 
heterozygote deficiencies (Le Goff-Vitry 
et al. 2004, Morrison et al. 2011, Dahl et al. 
2012). Similarly, heterozygote deficits have 
been detected in the majority of population 
genetic studies of corals (Ayre and Hughes 
2000, van Oppen and Gates 2006, Selkoe 
and Toonen 2006), including cold-water 
corals (Baco and Shank 2005, Baco et al. 
2006). Occurrence of heterozygote deficits 
in nature is often explained as a violation 
of the concept of the ‘ideal population’ 
assumed by the Hardy-Weinberg principle. 
For instance, a subset of the population 
could contribute the most genetic material 
to the next generation (non-random mating). 
Studies have shown a propensity for clonal 
reproduction via fragmentation in most L. 
pertusa populations surveyed (Le Goff-Vitry et 
al. 2004, Morrison et al. 2011, Dahl et al. 2012). 

Clonal reproduction can cause heterozygote 
deficits due to deviation from random mating 
(Dahl et al. 2012, van Oppen et al. 2008). In 
fact, asexual reproduction via fragmentation 
may play a key role in the establishment and 
maintenance of deep L. pertusa reefs (Dahl et 
al. 2012). For example, few genetic individuals 
become dominant at a reef site and skew 
opportunities for mating. Additionally, 
the lifespan of a genetic individual may be 
quite long (thousands of years; Dahl et al. 
2012), therefore, this life history trait may be 
important to both estimates of connectivity 
and to the evolution of the species. 

Seamounts are hypothesized to be locations 
of isolation in the deep-sea, resulting in 
high levels of speciation and endemism 
(e.g. Hubbs 1959, Rowden et al. 2010, Pante 
et al. 2015b). Three studies (Thoma et al. 
2009, Cho and Shank 2010, Herrera et al. 
2012) have addressed connectivity along the 
New England and Corner Rise Seamounts. 
Thoma et al. (2009) investigated isolation 
among individual seamounts by testing 
the hypothesis that corals occurring at 
isolated seamounts would possess unique 
mitochondrial DNA haplotypes. Variability 
in the mitochondrial mismatch repair gene 
homolog (mutS) was assessed for five octocoral 
genera. Nine markers for antipatharians as 
well as an intergenic spacer for bamboo corals 
were also incorporated into the data set. 

The Thoma et al. (2009) study found four 
haplotypes unique to the seamounts, as well 
as two haplotypes from the adjacent margin 
that were widespread, consistent with the 
possibility of seamounts being hotspots for 
divergence of species. A caveat of this work 
is that the unique haplotypes discovered 
at the seamounts were not necessarily the 
result of endemism, but could be due to small 
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sample sizes. This work, however, is based 
on the assumption that mutS haplotypes were 
species-specific. Subsequent work has shown 
this is not the case. Rather, some species of 
octocorals have multiple haplotypes for mutS, 
which can lead to underestimating species 
ranges, while other mutS haplotypes are 
shared between multiple species, resulting 
in overestimating species ranges (McFadden 
et al. 2010, McFadden et al. 2011, Baco and 
Cairns 2012, Pante et al. 2015b). These same 
studies show that only about 50% of species 
could be resolved using the mutS marker. 
Thus the single-marker approach of Thoma 
et al. (2009) likely does not provide sufficient 
power to resolve the connectedness of the New 
England and Corner Rise seamounts at the 
species level.

In contrast, data from seven mitochondrial 
gene regions and nuclear genetic variants 
of the deep-sea bubblegum coral Paragorgia 
arborea revealed basin-wide and global 
patterns of genetic variation correlated 
with historical migrations and connectivity 
from the Western Pacific into the Atlantic 
(Herrera et al. 2012). Prior to this study, 
diversity throughout the entire known 
distribution of a cold-water coral species had 
not been evalutated. Herrera et al. (2012) 
utilized mitochondrial and nuclear genetic 
variants in a phylogeographic context to 
examine the compatibility of P. arborea with 
the genealogical-phylospecies concept by 
examining specimens collected over its 
known distribution. The multi-marker use 
demonstrated that the global morphospecies 
P. arborea can be defined as a genealogical-
phylospecies hosting differing levels of
connectivity around the worlds’ oceans.
Global genetic variation among populations
of this species revealed significant basin
scale differences. These phylogeographic
data suggest a scenario in which P. arborea

originated in the North Pacific, possibly 
in the Western North Pacific, followed 
by colonization of the South Pacific and 
spreading eastward around the Southern 
Hemisphere in a stepping stone fashion 
(possibly via the Antarctic Circumpolar 
Current). The colonization of the North 
Atlantic seems to have occurred through a 
more recent dispersal event from the South 
Pacific, via the Central American Seaway, 
or from the South Atlantic.  Notable is that 
despite the finding of significant geographic 
variation over the geographic range, no 
significant correlation with depth was 
observed.

A study by Cho and Shank (2010) 
demonstrated the impact host-specific 
symbiotic relationships may have on the 
genetic connectivity of fauna associated with 
cold-water corals. Deep-sea corals provide 
habitat for many species that have developed 
symbiotic relationships with varying degrees 
of specificity to their host corals (Shank 2010, 
Buhl-Mortensen et al. 2010). The co-evolution 
of host-associate relationships may affect the 
genetic connectivity of these coral associates. 
Cho and Shank (2010) studied the patterns 
of dispersal and genetic connectivity of four 
brittle star species (Asteroschema clavigerum, 
Ophiocreas oedipus, Ophioplinthaca abyssalis and 
Ophioplinthaca chelys; Figure 3) that display 
differing levels of associative specificity to 
deep-sea coral hosts inhabiting the New 
England and Corner Rise seamounts.

Analyses of two mitochondrial markers, 
mt16S and mtCOI, revealed species-specific 
genetic differentiation based on geography 
and depth. Asteroschema clavigerum and 
O. oedipus showed significant isolation by
distance, significant genetic differentiation
by depth, and predominantly westward
historical migration. Asteroschema clavigerum
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had significant genetic differentiation by 
geographic region. In contrast, O. abyssalis and 
O. chelys displayed predominantly eastward
historical migration and O. chelys displayed
significant genetic differentiation within
individual seamounts. The patterns of genetic
differentiation shared by A. clavigerum and O.
oedipus may be correlated with species-specific
host specificity and dispersal strategies. Both
of these species have seemingly obligate
symbiotic relationships to their specific coral
hosts and are broadcast spawners, while the
other two species studied, O. abyssalis and O.
chelys, have lower or no fidelity to their coral
hosts and are potentially brooders.

IV.2. North Pacific Ocean
Although scleractinian reefs are not common 
in the North Pacific Ocean, dense deep-sea 
coral assemblages, dominated by octocorals 
and antipatharians, are found throughout 
the region (Baco 2007, Hourigan et al. 2007). 
Despite the high diversity and abundance of 
corals, population genetics analysis of only 
one species has been published. Hemicorallium 
laauense (= Corallium laauense), a commercially 
important octocoral in the family Coralliidae, 
harvested periodically as part of the precious 
coral fishery (reviewed in Grigg 2002), is 
numerically dominant  in the Hawaiian 
Archipelago at 350-575m depth (Parrish and 
Baco 2007, Baco 2007). Hemicorallium laauense 
appears to spawn with a periodic or quasi-
continuous reproductive strategy (Waller and 
Baco 2007).

Figure 3. Images of four brittle star species studied by Cho and Shank (2010). A) Brittle star Asterosche-
ma clavigerum found on the deep-sea coral Paramuricea sp. B) Brittle star Ophiocreas oedipus found 
on the deep-sea coral Metallogorgia melanotrichos. C) Brittle stars Ophioplinthaca abyssalis found 
on the deep-sea coral Candidella imbricate. D) Brittle stars Ophioplinthaca chelys found on the sea 
floor. Image credit: WHOI; DASS 2005 Expedition; IFE; NOAA OE.
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Because of the relatively linear nature of the 
Hawaiian Archipelago, one would expect a 
classic isolation-by-distance signature in the 
genetic data for most species. However, results 
from an analysis of three microsatellite loci 
in H. laauense, collected from eight sites in the 
Main Hawaiian Islands and southern end of 
the northwestern Hawaiian Islands, indicated 
no isolation-by-distance pattern (Baco and 
Shank 2005). Instead, results indicate that the 
scale of genetic structure on isolated features 
such as oceanic islands and seamounts may be 
more complex than a simple stepping-stone 
model. For example, the deepest site, located 
off Kauai in the middle of the sampling area, 
was quite different genetically compared to 
the majority of sites sampled during the study. 
Also, there was significant variation within 
the continuous Makapu’u bed (on the scale of 
1.6 km) off the Island of Oahu. The fairly high 
heterozygote deficiency found for this species 
based on six microsatellite markers (Baco and 
Shank 2005, Baco et al. 2006) could indicate 
a high degree of inbreeding for this species, 
implying significant isolation for each of the 
precious coral bed locations investigated, with 
only occasional long distance dispersal events. 
These results suggest connectivity within and 
between each feature on or each location along 
a seamount chain should be assessed when 
considering any management actions.

Analyses based upon mitochondrial DNA 
also provide some insight into connectivity 
along North Pacific seamounts. Previous 
studies of seamount octocorals indicated 
widely distributed mitochondrial haplotypes 
and counter the idea that seamounts may be 
isolated (Smith et al. 2004, Thoma et al. 2009). 
However, each of these studies cautions that 
mtDNA markers were not morphologically 
ground-truthed to determine the level of 
genetic variation which corresponds to a 
species. A recent study of the octocoral genus 

Narella (Family Primnoidae) examined the 
variability of six mtDNA regions relative 
to species designations in this genus (Baco 
and Cairns 2012). The results of this study 
indicated that the markers used in previous 
studies could not distinguish individuals 
at the species level (mutS) and two markers 
(indel regions) could not distinguish between 
genera (Smith et al. 2004) based on mtDNA 
haplotypes. Thus, the fact that haplotypes 
were widespread is not sufficient evidence to 
disprove isolation of seamount features. Using 
all six mtDNA markers on specimens collected 
on North Pacific seamounts, the results of the 
Narella study indicate that geographic and 
bathymetric ranges of seamount species may 
be much narrower than previously thought.

V. Future Directions
Whereas the examples discussed above 
provide insights into patterns of connectivity 
for several abundant and important deep-
sea coral species in U.S. waters, much work 
remains before we can achieve a fundamental 
understanding of the factors that control 
connectivity among coral species and their 
diverse associated fauna. Several specific 
research questions that may guide future 
studies of connectivity among deep-sea corals 
are suggested below.

V.1. How Far do Larvae of Deep-
Sea Corals and Associated
Organisms Disperse?
A basic understanding of distributions 
of deep-sea coral species and associated 
fauna, coupled with a thorough taxonomic 
evaluation, is necessary to address this 
research question (see Pante et al. 2015a). 
Although general ranges for many deep-sea 
coral species are known, the need exists to 
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fine-tune estimates and fill in information 
gaps by visiting unexplored areas. Exploratory 
cruises are necessary to locate populations, 
assess abundances, and collect samples. 
Success in locating and sampling deep-sea 
corals and associated organisms during 
exploratory cruises will depend upon access 
to deep-submergence technologies (see 
below). Additionally, such explorations 
may be guided by predictive biophysical 
modeling, which may help locate where 
previously unknown coral habitats occur 
(e.g. Yearsley and Sigwart 2011). Predictive 
modeling involves methods that produce 
distribution maps from limited sampling 
data, as interpreted through remote sensing 
information such as multibeam bathymetry, 
substrate and geomorphology, rugosity, slope 
and aspect (e.g., Howell et al. 2011) and/or 
aspects of the environmental tolerances of 
corals compared with physical, chemical and 
biological variables at the geographic locations 
being studied (Davies et al. 2008, Guinotte 
et al., this volume)). The effective use of 
biophysical models for deep-sea organisms is 
hampered by knowledge gaps in both physical 
and biological parameters (Hilário et al. 2015

While sampling deep-sea organisms can be 
labor intensive and expensive, obtaining 
sufficient numbers of individuals per 
population for statistical testing has strongly 
impeded progress to date. Need for adequate 
numbers of samples is regarded as essential 
and of critical importance. A balance between 
adequate sampling of local populations and 
sampling broadly throughout the geographic 
range of the species is imperative (Pante et 
al. 2015a). Therefore, funding agencies and 
science parties need to appreciate the value of 
connectivity studies and dedicate dive time 
specifically for sampling spatially structured 
populations. Much can be gained through 
collaborative efforts in large-scale and multi-

species connectivity studies if adequate time 
for intensive sampling of individual species is 
included in the sampling plan.

With the advance of new genetic tools and 
the unknown scales of dispersal for almost 
all deep-sea corals and their symbionts, fine-
scale (spatial and temporal) studies are now 
needed. For example, genetic structure was 
found at very small spatial scales (within a 
reef) but disappeared or became negative at 
larger scales in Hawaiian Pocillopora corals 
(Gorospe and Karl 2013). Clonal reproduction 
through fragmentation in scleractinian corals 
may be key to extreme longevity of a genetic 
individual (clone), and may skew chances 
for reproduction to a few individuals (Dahl 
et al. 2012). Therefore, sampling should 
address fine-scale structuring adequately. 
The feasibility of such a sampling scheme has 
been demonstrated (Becheler et al., in review). 
Larger sample sizes and additional markers 
are necessary to obtain the statistical power 
necessary to distinguish small but important 
genetic distinctions (Waples 1998, Hedgecock 
2007). 

V.2. Can Larval Dispersal
Distances be Accurately
Estimated Given Current
Knowledge of Early Life Histories?
Early life history traits, such as timing 
and potential seasonality of reproduction, 
reproductive output and success, planktonic 
duration, and recruitment, all influence 
connectivity (e.g. Underwood and Fairweather 
1989, Rosser 2015). Reproductive periodicity, 
larval type and behaviors are fundamental 
processes that need further investigation 
(Hilário et al. 2015). In the few species that 
have been studied, nearly all modes and 
patterns of reproduction have been observed 
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(Patarnello et al. 2007, Metaxas and Kelly 2010, 
Mercier et al. 2011). Thus, making predictions 
on dispersal, based upon taxon, depth, or 
location, is extremely difficult.

Assessing patterns of connectivity among 
organisms associated with deep-sea coral 
habitats will expand understanding of the 
functioning of and potential sensitivities 
to disturbance of these ecosystems. By 
comparing patterns of genetic connectivity 
between different species within the same 
habitat, we gain insight into what drives 
migration and dispersal in these ecosystems 
(community genetics). Contrasting patterns of 
population structure observed among species 
within the same habitat indicates different 
life histories are driving resultant dispersal 
patterns (i.e., vagile vs sessile, lecithotrophic 
vs planktotrophic larvae) whereas similar 
patterns of population structure among 
species within the same habitat indicate 
larger forces, such as deep ocean current 
circulation that entrain larvae, are acting on 
organisms similarly. For example, Samadi 
et al. (2006) examined connectivity among 
populations of several squat lobster species 
and two gastropod species along the Norfolk 
ridge seamounts. Results suggested that 
connectivity is restricted only for species with 
limited dispersal ability. Thus, life history 
is an important factor shaping connectivity 
patterns along this seamount chain.

V.3. To What Extent do Patterns
of Connectivity Relate to
Hydrodynamics?
For shallow-water marine taxa, integration 
of genetic, biological, geographic and 
hydrodynamic data into dispersal models 
has provided both estimates of connectivity 
as well as descriptions of physical forces that 
likely shape connectivity patterns (Manel et 

al. 2003, Galindo et al. 2006, Cowen et al. 2006, 
Baums et al. 2005, Baums et al. 2006, Werner 
et al. 2007, Mokhtar-Jamaï et al. 2011, Foster et 
al. 2012). Hydrodynamic patterns surrounding 
deep-sea coral areas are less known (see 
Hilário et al. 2015, for review). However, 
physical data are now being collected in some 
deep-sea regions through the deployment 
of instrumentation that sequentially collects 
environmental data over either short 
(autonomous underwater vehicles) or long 
periods of time (benthic landers; e.g. Davies 
et al. 2010, Yearsley et al. 2011). Integration of 
ocean circulation and larval transport models 
(based upon laboratory tested larval durations 
of seven deep-sea invertebrates) exemplified 
the various patterns of dispersal possible 
(Young et al. 2012). General conclusions from 
this study were that most larvae are retained 
in the same geographic location as adults, 
but when there is net transport of larvae out 
of an area, it is unidirectional in an eastward 
and northward trajectory in Intra-American 
seas (Young et al. 2012). The combination of 
genetic connectivity and hydrodynamic data 
at key time periods (i.e., coral spawning) 
should allow for better precision in predictive 
modeling of both dispersal potential and coral 
presence.

V.4. What Research Tools May be
Useful for Studies of Connectivity
in the Deep Sea?
Continued development of genetic tools 
is necessary to fill large knowledge gaps 
regarding evolutionary processes that shape 
diversity in the deep sea. Through the 
application of genetic techniques, patterns 
and limits of species distributions as well as 
patterns of dispersal, migration, recruitment 
and clonality can be described. Choosing 
the most appropriate genetic tools is project-
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specific, dependent upon the question 
driving the research. For poorly characterized 
taxa, DNA sequence data is necessary to 
identify and refine species boundaries and 
relationships between closely related taxa 
prior to further analyses (Knowlton 2000). 
For example, examination of morphological 
and phylogenic data is necessary prior to 
population genetic analyses for most octocoral 
species (McFadden et al. 2010). Given the 
prevalence of regional and bathymetric 
cryptic species (France and Kocher 1996, 
Etter et al. 1999, Etter et al. 2005, Chase et 
al. 1998, Vrijenhoek 2009, Miller et al. 2010, 
Miller et al. 2011, Puillandre et al. 2011, 
Mantelatto et al. 2014, Pante et al. 2015a), it 
is likely that the number of deep-sea species 
has been underestimated (Rogers 2002). 
Broad-scale sampling and DNA sequencing 
of few samples can address the taxonomy as 
well as provide a first order understanding 
of relationships among geographically 
distant populations. Adequate sampling, 
plus simultaneous molecular and traditional 
systematic investigations may eventually 
produce more accurate species lists and better 
evolutionary descriptions of the evolutionary 
relationships among them (Vrijenhoek 2009, 
Pante et al. 2015a). These kinds of results 
would provide the foundation for future 
population genetic studies. Sampling of 
this nature should be incorporated into 
cruise objectives. Additionally, continued 
database development, promotion of data 
and sample sharing, plus synthesis and 
collaboration, should allow for advancements 
in understanding (McClain and Hardy 2010). 

Inexpensive production of large volumes 
of sequence data for any organism is now 
possible using next-generation sequencing 
technologies (NGS). These new sequencing 
technologies offer exciting prospects 
for marker development in deep-sea 

coral taxa. Researchers using NGS can 
identify microsatellites more quickly and 
inexpensively (e.g. Coykendall and Morrison 
2013, Morrison et al. 2015). Additional types 
of molecular markers, such as single-copy 
nuclear genes (e.g. Concepcion et al. 2008), 
and single-nucleotide polymorphisms 
(SNPs, e.g. Baird et al. 2008), may now be 
developed without prior knowledge of the 
genome (Reitzel et al. 2013). SNPs are often 
numerous (hundreds to thousands) and 
may provide higher genome coverage than 
microsatellites (tens of markers). The utility 
of SNPs for delimiting recalcitrant species of 
octocorals in the genera Chrysogorgia (Pante 
et al. 2015c) and Paragorgia (Herrera and 
Shank 2015) was recently demonstrated. 
Whether or not differentiation is detected 
using neutral genetic markers as discussed 
thus far, populations may be adapted to local 
environmental conditions. By sequencing 
coding regions of the genome, genes that may 
underlie functional variation can be identified 
and surveyed through gene expression 
analyses (e.g. Vera et al. 2008). As such, 
advances in both sequencing technologies 
and statistics for population genomics may 
allow researchers to identify genome-wide 
signatures of adaptation (Baums 2008, Ledoux 
et al. 2015). Collection of environmental data 
that may be correlated with differences in 
gene expression will add value to population 
genomic studies and may help to identify 
the mechanisms that generate and maintain 
diversity. 

For certain deep-sea coral associates, 
chemistry of calcified structures (e.g., fish 
otoliths and molluscan statoliths) can be 
used to assess natal origins of individuals 
and help define geographic scale of dispersal 
and connectivity. These metabolically 
inert structures record the chemistry of the 
environment in which the animal lives. 
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Natural tags are derived from variation 
in environmental conditions, including 
temperature, salinity, dissolved oxygen, 
and other chemical parameters. If the 
environmental chemistry is distinct, then these 
chemical tags provide a record that chronicles 
spatial separation during spawning, and 
differences between populations (Campana 
et al. 1994). While connectivity in shallow-
water environments has been addressed using 
this technique (Thorrold et al. 2007, Eldson 
et al. 2008), application in the deep sea  has 
been limited to a few studies focused on 
stock assessments of commercially exploited 
fishes (Hauser and Carvalho 2008). Combined 
approaches using microsatellite markers and 
otolith chemistry can help assess fine scale 
genetic structure in deep-sea fishes, because 
these tools document both the ecological 
and evolutionary timescales appropriate for 
assessing dispersal (Carlsson et al. 2011)

Working in the deep-sea environment is 
challenging and costly, and the advancement 
of connectivity research and exploration 
is intimately tied to advancements in 
deep-submergence technologies. Future 
technological achievements will be those 
that comprehensively expand our ability 
to characterize factors fundamental to 
understanding connectivity, including 
refining  distributions of subpopulations and 
habitats, obtaining co-located oceanographic 
data over relevant temporal and spatial 
scales of connectivity, confirming the 
presence of fauna and habitat availability, 
and collecting sufficient numbers of 
population-level samples for taxonomy 
and connectivity studies. Improved AUVs 
offer long-range multi-sensor platforms for 
spatially-expansive survey coverage, precise 
dynamic navigation, fine-scale bathymetric 
mapping, high-resolution photographic 
and chemical laser imaging (e.g., detecting 

species-specific chemicals secreted by corals), 
coupled with coincident oceanographic 
data. The use of remotely-deployed cameras 
(e.g., drop cameras and towed camera sleds) 
allows for rapid ground-truthing of habitats 
and targeting of prime habitat for further 
observation, exploration, and sampling 
using Remotely Operated Vehicles (ROVs) 
and/or submersibles. Development of novel 
sampling gear for ROVs and submersibles 
that allows many discrete samples to be 
collected per dive will increase sampling 
resolution and extent. Lastly, strategically-
placed long-term monitoring instrumentation, 
including time-lapse cameras, oceanographic 
data samplers, plankton samplers and non-
lethal sample collection devices, will help 
resolve long-term oceanographic patterns 
as well as provide insights into species 
behaviors and larval transport. Advancing 
technological capabilities, including 
autonomous oceanographic characterization 
of seafloor habitats, expands our fundamental 
understanding of benthic processes and their 
link to coral community connectivity.

VI. Conclusions
Understanding connectivity and the 
processes that influence connectivity can 
enhance the conservation of deep-sea coral 
diversity through science-based stewardship. 
Connectivity through exchange of larvae 
among populations should be one of the 
factors considered during the planning and 
design phases of deep-sea coral protection 
areas. Combining estimates of genetic 
connectivity with physical oceanographic 
data will lead to a better understanding 
of processes that underlie larval dispersal 
and, therefore, connectivity. Population 
connectivity data among deep-sea coral 
populations is slowly becoming available. 
However, more work is needed and research 

POPULATION CONNECTIVITY OF DEEP-SEA CORALS
• • •



397

POPULATION CONNECTIVITY OF DEEP-SEA CORALS
• • •

must continue as scientists and managers 
work toward protecting and conserving these 
ecologically valuable ecosystems.
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