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I. Introduction
Deep-water corals are some of the slowest growing, 
longest-lived skeletal accreting marine organisms. 
These habitat-forming species support diverse faunal 
assemblages that include commercially and ecologically 
important organisms. Therefore, effective management 
and conservation strategies for deep-sea corals can be 
informed by precise and accurate age, growth rate, 
and lifespan characteristics for proper assessment of 
vulnerability and recovery from perturbations. This is 
especially true for the small number of commercially 
valuable, and potentially endangered, species that are 
part of the black and precious coral fisheries (Tsounis et 
al. 2010). In addition to evaluating time scales of recovery 
from disturbance or exploitation, accurate age and growth 
estimates are essential for understanding the life history 
and ecology of these habitat-forming corals. Given that 
longevity is a key factor for population maintenance and 
fishery sustainability, partly due to limited and complex 
genetic flow among coral populations separated by great 
distances, accurate age structure for these deep-sea coral 
communities is essential for proper, long-term resource 
management.
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The importance of accurate age and growth 
characteristics has another important utility in 
marine sciences. Many deep-sea corals have 
been useful as biogeochemical proxies that 
provide a unique view of marine climate and 
environmental change over time (e.g., Adkins 
et al. 1998, Robinson et al. 2005, LaVigne et al. 
2011). Similar to trees on land, many corals 
have concentric growth rings that allow 
scientists to track growth patterns, which 
can be used to look back into climate history 
over the coral’s lifespan using stable and 
radio-isotope techniques. Here we summarize 
recent developments in determining age and 
growth characteristics for structure-forming 
deep-sea corals, many of which are vulnerable 
to disturbance, with highlights on recent 
advances in paleoclimate reconstruction 
efforts using deep-sea corals.

II. Age and Growth Rates
Age and growth rates of deep-sea corals 
have been determined by methods that differ 
greatly in approach and experimental design. 
These methods include tagging and outgrowth 
observations (often limited to shallower 
depths; Grigg 1976, Stone and Wing 2001, 
Peck and Brockington 2013), sclerochronology 
(counting of growth rings in the axial skeleton; 
Grigg 1974, Wilson et al. 2002, Marschal et al. 
2004, Tracey et al. 2007, Aranha et al. 2013), 
and by radiometric techniques (Uranium/
Thorium, Lead-210 and radiocarbon (14C) 
dating; Cheng et al. 2000, Adkins et al. 
2002, Andrews et al. 2009, Roark et al. 2009, 
Carreiro-Silva et al. 2013, Aranha et al. 2014). 

When evaluating reported age and growth 
rates, it is important to evaluate the strengths 
and weakness of each method along with 
its applicability to the potential lifespan 
(Figure 1). These may include the limits of 

methodological dating and precision, as well 
as skeletal morphology and mineralogy. For 
example, in traditional tagging studies it is 
difficult to get accurate in-situ measurements 
and it can take many years to see measurable 
growth (Grigg 1976). Sclerochronology can 
provide estimates of age from visible growth 
rings in the skeletal structure (Figure 2), but 
this approach requires validation of the ring 
formation periodicity (Andrews et al. 2002; 
Sherwood et al. 2005). Radiometric techniques 
have different ranges for effective dating and 
usually require assumptions. With recent 
advances in Uranium/Thorium dating, it is 
possible to determine the age of aragonitic (a 
form of calcium carbonate) corals from less 
than a few decades old up to 600,000 years in 
age (Cheng et al. 2000). Typical uncertainty is 
variable and dependent upon various factors, 
but recent developments have reduced the 
uncertainty (Edwards et al. 1987, McCulloch 
and Mortimer 2008). Lead-210 dating is 
typically applicable to the last ~100 years with 
uncertainties as low as ± 10 years and is most 
applicable to determining a mean growth 
rate for the entire colony (Andrews et al. 
2009). The range of conventional radiocarbon 
dating is from modern time (defined as 1950 
AD) to ~50,000 years BP. While the method is 
effective, challenges exist in most applications 
because the atmospheric concentration of 
radiocarbon has varied over time (Stuiver 
and Brazunias 1993, Reimer et al., 2009). In 
the marine environment, radiocarbon ages 
are also corrected for the difference between 
the atmospheric radiocarbon content and 
the local radiocarbon content of the surface 
ocean, also known as a “reservoir correction.” 
Age determination in deep-sea corals using 
radiocarbon dating is most applicable to 
growth occurring over centuries to millennia 
for living specimens, and extends into fossil 
specimens in the 10’s of thousands of years 



AGE, GROWTH RATES, AND PALEOCLIMATE STUDIES IN DEEP SEA CORALS OF THE USA
• • •

Chapter 10 • page 4

Figure 2. Ultraviolet light illuminates the growth rings in 
a cross-section of a 44-year-old deep-sea coral (Primnoa 
resedaeformis) collected off the coast of Newfoundland 
at 400 meters. Similar to trees, cross-sections reveal coral-
growth rings (photo by Owen Sherwood).

Figure 1. Maximum lifespan (years) of several key deep-sea corals (blue), and the relative time span of 
efficacy for different dating techniques (red). Typical dating uncertainties listed for dating techniques.
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Figure 3. Distribution of bomb-derived radiocarbon (r14C) in proteinaceous deep-sea corals illustrating 
the uptake and delivery of elevated r14C in food sources (e.g., rapidly exported surface derived organic 
matter) to the deep-sea coral community. In comparison, the r14C of the carbonate portion of the bamboo 
coral is not elevated and reflects the influence of ambient water with a r14C signature equivalent to the 
surrounding dissolved inorganic carbon pool.  

Figure 4. Hawaiian black coral Leiopathes annosa. This 
species includes the oldest known coral. Photo credit: Hawaii 
Undersea Research Laboratory (HURL).  
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(Guilderson et al. 2005). A second form of 
radiocarbon dating for some living deep-
sea corals involves the identification of the 
anthropogenic bomb-radiocarbon signal from 
the testing of thermonuclear devices in the 
1950s and 1960s. This method is sometimes 
referred to as bomb radiocarbon dating 
(Figure 3; Roark et al. 2005, Sherwood et 
al. 2005), which also has applications in the 
validation of fish age (Andrews et al. 2012).

Black coral

Black coral (Figure 4) represent a group 
of organisms that are some of the deepest 
dwelling and longest-lived species. Several 
species live in US territorial waters and most 
have been long lived (centuries to millennia). 
Wagner et al. (2012) summarized information 
on black coral growth and longevity. 
Longevity is particularly important within the 
black coral fishery (Parish et al., and Wagner et 
al. this volume) because age and growth rates 
are needed to determine sustainable yields. 
These typically shallower dwelling species 
appear to be faster growing than deeper 
species and growth rates have been measured 
based on axial extension rates, growth rings, 
radiocarbon (14C) and lead-210 dating (Grigg 
1976, Roark et al. 2006, Love et al. 2007, Risk 
et al. 2009). Estimated longevities for sampled 
Antipathes spp. ranged from ~ 12 - 140 years 
(Wagner et al. 2012). In contrast, deepwater 
black corals from Hawaii (Leiopathes annosa, 
reported as Leiopathes spp.) were found to 
have a potential lifespan in excess of 4000 
years with a radial growth rate of less than 
10 µm·yr-1 (Roark et al. 2006, 2009). Similar 
estimated growth rates and longevities (400 – 
2100 years) have been reported for Leiopathes 
from the Gulf of Mexico (Prouty et al. 2011) 
and the southeastern United States (Williams 
et al. 2007), with variable growth rates 
documented from populations in the Azores 
(Carreiro-Silva et al. 2013). 

Gold coral

The proteinaceous colonial parazoanthids 
(formerly known as Gerardia spp.), commonly 
referred to as gold corals, have similar 
longevity to that of Leiopathes. Numerous 
specimens (n=23) of the Hawaiian gold 
coral (Kulamanamana haumeaae) (Figure 5) 
dated by radiocarbon show lifespans up to 
2740 years with an average radial growth 
rate of 41 ± 20 µm·yr-1 (Roark et al., 2006, 
2009, Parish and Roark, 2009). These results 
are not in agreement with shorter lifespan 
estimates (max age ~70 years) and faster radial 
growth rates (~1 mm·yr-1) from presumed 
annual growth rings (Grigg 1974). A gold 
coral (identified as Gerardia sp.) specimen 
from Little Bahamas Bank in the Atlantic 
Ocean dated by amino acid dating (~250 
±70 years; Goodfriend et al., 1997) and by 
radiocarbon (1800 ±300 years; Druffel et al., 
1995) also revealed similar age and growth 
discrepancies. Using radiocarbon and stable 
isotopes (d13C, d15N), Roark et al. (2009) 
showed that K. haumeaae are feeding almost 
exclusively on recently transported particulate 
organic carbon from surface waters and that 
skeletal growth utilizes this carbon. An in 

Figure 5. The Hawaiian gold coral 
Kulamanamana haumeaae. Photo credit: HURL.
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situ tagging study by Parrish and Roark (2009) 
observed no measurable change in the size of 
Hawaiian gold coral colonies over nine years, 
which is consistent with the slow growth, 
long-lived age estimates using radiocarbon 
dating. Based on radiocarbon results, and 
counter indicative to sclerochronology 
estimates, the Western Pacific Fishery 
Management Council implemented a 5-year 
moratorium on gold coral harvesting in 2008, 
which was subsequently extended through 
2018.

Precious coral

Corals in the Family Coralliidae (e.g., pink and 
red corals in the genus Corallium) have been 
a historical part the precious coral (Figure 6)
fishery in many parts of the world, primarily 
in the Mediterranean and western north 
Pacific (Bruckner and Roberts 2009). Most of 
these fisheries have been strongly impacted 
by fishing effort that exceeds sustainable 
growth. Age estimates based on a variety of 
petrographic (carbonate structure) and organic 
band counting are generally consistent with 

ages estimated using radiometric techniques. 
Colony age estimates range between 50 and 
180 years, with radial growth rates less than 
1 mm·yr-1 (Druffel et al. 1990, Marschal et al. 
2004, Andrews et al. 2005, Roark et al. 2006, 
Luan et al., 2013). In addition, deeper water 
Corallium species appear to grow more slowly 
than shallower species (Roberts et al. 2009), 
making them more vulnerable to exploitation. 
This has led to cautionary measures in some 
regions where deep-water Corallium is known 
to exist (DeVogelaere et al. 2005).

Bamboo and other octocorals

Radiocarbon and bomb-radiocarbon dating 
of living bamboo corals (Family Isididae) 
(Figure 7) range from 50 to 420 years and 
radial growth rates ranging 50 to 100 µm·yr-1 
(Roark et al., 2005, Sherwood et al., 2009, Hill 
et al., 2011, Sinclair et al., 2011, Thresher et al. 
2011, Farmer et al., 2015). Based on the timely 
response of the bomb radiocarbon signal, it is 
likely that there is a correspondence of growth 
with surface water productivity. A recent 
innovation in lead-210 dating using a higher 

Figure 6. The Hawaiian precious coral Corallium 
laauense (=Hemicorallium laauense). In the 
past, this species has been harvested for jewelry in 
Hawaii. Photo credit: HURL.

Figure 7. The bamboo coral, Isidella tentaculum, 
from Giacomini Seamount in the Gulf of Alaska. 
Photo credit: NOAA and the Woods Hole 
Oceanographic Institution Alvin Group.
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resolution approach provided age estimates 
of 50 to 100 years for bamboo coral in the NE 
Pacific (Andrews et al. 2009). Given that radial 
growth rates for this group appear to be less 
than 200 µm·yr-1, this group is susceptible to 
disturbance and removal because recovery 
would take decades. 

Red tree corals (Family Primnoidae) can reach 
over 2 m in height and are among the most 
important habitat-forming gorgonian corals in 
the Northeast Pacific and Northwest Atlantic. 
Maximum ages of live-collected red tree coral 
specimens from Eastern Canada (Primnoa 
resedaeformis) were ~ 78 -100 years (Sherwood 
et al., 2005, Sherwood and Edinger 2009) and 
from the Northeast Pacific (Primnoa pacifica) 
were ~ 119-185 years (Andrews et al., 2002, 
Aranha et al. 2014). Estimated average radial 
growth rates of P. pacifica of 320-360 µm·yr-1 
were faster than those of the sister species, 
P. resedaeformis, in the Atlantic (Aranha et 
al. 2014). Sub-fossil (i.e., dead corals whose 
remains are not fully fossilized) specimens of 
P. resedaeformis were estimated to be at least 
700 years old (Sherwood et al., 2006). 

Ages and radial growth rates of other 
deepwater gorgonian corals have been 
reported for Muricella sp. (Family: 
Acanthogorgiidae; ~50 and 100 years; 100-200 
µm·yr-1) from the 100 m depth range in the 
tropical Pacific (Williams and Grottoli, 2010); 
and from the Northeast Atlantic, Paramuricea 
sp. (Family: Plexauridae; ~ 70 – 100 years; 92-
205 µm·yr-1; depth 814-850 m) and Paragorgia 
arborea (Family: Paragorgiidae; 80 years; 830 
µm·yr-1; depth 814-850 m) (Sherwood and 
Edinger 2009). From the Gulf of Mexico, 
Prouty et al. (2014b) reported life spans of over 
600 years for Paramuricea biscaya, with radial 
growth rates between 0.34 µm yr-1 and 14.20 
µm yr-1 and linear growth rates from 0.019 cm 
yr-1 to over 1 cm yr-1.

Stony corals 

A few species of scleractinian corals, especially 
Lophelia pertusa (Figure 8), Solenosmilia 
variabilis, and Oculina varicosa, (and to a lesser 
extent Enallopsammia rostrata, E. profunda, 
Madrepora oculata and Goniocorella dumosa) 
create deepwater coral reefs or bioherms. 
These massive and ancient structures can 
be up to 30 m high and 10’s of kilometers 
in length (Reed 2004, Roberts et al. 2009). 
Lophelia reefs from lower latitudes, like those 
off of NW-Africa, the Mid-Atlantic Ridge 
and the Western Mediterranean Sea, indicate 
their structural growth represents 50,000 
years of accumulation, according to U/Th 
dating (Schroder-Ritzrau et al., 2005). Higher 
latitude Lophelia carbonate mounds, appear 
to have gone through alternating cycles of 
accumulation and die off over periods of 
centuries that appear to be tied to changes 
in oceanographic conditions associated with 
glacial-interglacial cycles (Roberts et al. 
2009) and the North Atlantic sub-polar gyre 
(Douarin et al. 2013). Individual colonies of 
L. pertusa from bioherms in the northeastern 

Figure 8. Stony coral Lophelia pertusa in the 
Gulf of Mexico. Photo credit: NOAA & Bureau of 
Ocean Energy Management Lophelia II Project.
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Atlantic exhibited axial growth rates of 5-26 
mm·yr-1 based on in situ measurements, 
aquaria observations, isotopic analyses and 
estimates of age inferred from growth on 
artificial structures (Mortensen and Rapp 
1998, Mortensen 2001, Gass and Roberts 2006). 
Results with transplanted L. pertusa in the 
Gulf of Mexico exhibited axial growth rates of 
up to 16 mm·yr-1 with new polyps exhibiting 
higher growth rates and more mature polyps 
at rates of ≤5 mm·yr-1 (Brooke and Young, 
2009). Observations of L. pertusa colonies on 
oil rigs and shipwrecks in the northern Gulf of 
Mexico (320-995 m depths) yielded minimum 
calculated growth rates ranging from 3.2 to 
32.3 mm·yr-1 (Larcom et al. 2014). 

Azooxanthellate Oculina varicosa has a 
geographically restricted distribution and 
forms reef-like structures in relatively shallow 
water (70 – 100 m). An axial branch growth 
rate of 16.1 mm·yr-1 was measured in-situ for 
O. varicosa at 80 m depth (Reed 1981). Similar 
axial growth rates were found for Madrepora 
oculata (14.4 ± 1.1 mm·yr-1) using lead-210 
dating for samples collected off Norway 
(Sabatier et al., 2011). 

Solenosmilia variabilis is the dominant reef-
building coral on seamounts in the southwest 
Pacific, where it occurs at depths significantly 
deeper than the Northern hemisphere L. 
pertusa reefs. Fallon et al. (2014) reported 
growth rates of from 0.84 – 1.25 mm·yr-1 linear 
extension for colonies collected between 958 
and 1,454 m. The authors estimated a coral 
accumulation rate of ~ 0.27 mm·yr-1, indicating 
that recovery from trawl damage would likely 
be extremely slow. Neil et al. (2011) found 
similar linear growth rates for S. variabilis in 
on Chatham Rise in New Zealand (ranging 
from 0.3 to 1.3 mm·yr-1) and estimated that it 
could take 380 to 1,700 years for colonies to 
grow to a maximum height of 1 m. 

Enallopsammia rostrata (Family 
Dendrophylliidae) is an aborescent stony 
coral that creates massive dendritic colonies 
up to 1 m wide and 0.5 m tall. Uranium-
thorium dating of specimens from the Line 
Islands (Houlbreque et al., 2010), and lead-210 
dating of a single North Atlantic specimen, 
have documented longevity up to ~600 years 
with axial extension rates of 5 mm·yr-1 a 
radial growth rate of ~0.07 mm·yr-1 near its 
base (Adkins et al., 2004). The structure of E. 
rostrata is prone to ‘shedding’ (natural limb 
loss) and as a consequence accurate estimates 
of axial growth rates are difficult to determine. 

Other members of the stony corals have 
different growth structures. The solitary cup 
coral Desmophyllum dianthus has a slow axial 
extension rate of 0.5-2.0 mm·yr-1 based on lead-
210, radiocarbon, and U/Th dating techniques 
(Cheng et al., 2000, Adkins et al., 2002, 2004).

III. Paleoclimate and 
Paleoenvironmental Studies 
using Deep-Sea Corals
The utility of deep-sea corals in understanding 
past climate variability is closely tied to 
accurately dating the corals specimens 
(Robinson et al., 2014). Equally important 
is the development of environmental 
proxies for the temperature and elemental 
composition of the water in which the coral 
grew. As such, a fundamental goal in deep-
sea coral paleoclimate research has been to 
determine how environmental conditions 
are captured in the coral skeleton records. 
Both solitary and colonial, as well as calcitic 
and proteinaceous deep-sea coral species, 
are being used for climate change studies. 
Increased geographic distribution of sampling, 
coupled with advances in micro-analytical 
sampling techniques and recognition of novel 
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biogeochemical proxies, have advanced the 
field and are providing insights on climate 
variability at century to millennial time-scales.

Paleothermometry 

Deep ocean circulation plays a vital role in 
modulating and stabilizing the Earth’s climate 
system, because the deep ocean stores and 
transports heat. Using radiocarbon captured 
within the skeletons of deep-sea corals, 
researchers have examined how the ocean 
has behaved in the past, in terms of rates of 
circulation and carbon exchange between 
different water bodies (e.g., Mangini et al., 
1998, Frank et al., 2004). Evidence from 
deep-sea coral records indicate that the deep 
ocean circulation can change abruptly, on 
timescales as short as 10 years (Adkins et al., 
1998, Eltgroth et al., 2006). Such changes may 
have a major impact on global temperatures 
(Robinson et al., 2005), atmospheric carbon 
concentrations (Burke and Robinson, 2012), 
and deep-sea organisms (Sutherland et 
al., 2012). Recent studies also indicate that 
tracers, such as the isotopic composition of 
neodymium from living and fossil deep-sea 
coral species (L. pertusa, D. dianthus and M. 
oculata), may have value in reconstructing 
ocean circulation patterns, particularly those 
operating during the last 10,000 years (van de 
Flierdt et al., 2006, 2010, Copard et al., 2012, 
Lopez Correa et al., 2012, Montero-Serrano et 
al. 2013).

To understand historical climate and 
ocean circulation changes, it is critical to 
reconstruct changes in seawater temperature. 
Ocean temperature reconstructions are 
challenging because biological processes 
also affect skeletal chemical compositions. 
The chemical composition of the skeleton is 
thus controlled by two main factors: 1) the 
external environment (e.g., temperature), 

and 2) biological activity (referred to as ‘vital’ 
effects). In deep-sea corals, these vital effects 
may be larger than environmental controls 
in elemental tracers, such as oxygen isotopes 
(d18O) or trace metal ratios (e.g., Mg/Ca), which 
are typically used as temperature proxies in 
other marine organisms. However, by taking 
an average of multiple analyses it is possible 
to calculate environmental temperatures from 
single specimens based on direct and indirect 
comparisons (Smith et al., 2000, Adkins et al., 
2003, Hill et al, 2011). Additional methods that 
show promise for temperature reconstruction 
include the ratio of Mg/Li in coral skeletons 
(Case et al, 2010, Montagna 2014) and 
“clumped” carbon and oxygen isotopes that 
act independently of vital effects (Thiagarajan 
et al., 2011). One important caveat for all of 
these methods is that calculated uncertainties 
for the paleothermometry estimates can range 
from 0.5 to 2°C. The utility of reconstructing 
small-scale temperature changes in the deep-
sea is limited by the precision of the technique 
as well as temporal precision and accuracy. 
Efforts are underway by a number of research 
groups to increase the precision and resolution 
with which deep-water temperatures can be 
reconstructed. 

Nutrient and trophic level proxies 

Proteinaceous deep-sea corals, such as black 
corals, gorgonians (e.g., Primnoa spp.), and 
the colonial zoanthids gold corals (formerly 
known as Gerardia sp.), derive their skeletal 
protein from recently exported particulate 
organic matter from the surface. From a 
compositional perspective, these corals are 
somewhat analogous to sediment traps, 
integrating the geochemical signature of 
recently exported organic matter into their 
slow growing skeletal structure. Useful 
geochemical signatures captured in skeletal 
protein include radiocarbon and stable carbon 
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(δ13C) and nitrogen (δ15N) isotopes, which can 
be used to reconstruct nutrient sources and 
cycling as well as food web (trophic) dynamics 
through time. Elemental composition, such as 
phosphorus and barium, in both stony corals 
and gorgonians, can also be used in studies of 
seawater nutrients variability.

Nitrogen

With sufficient understanding of the nitrogen 
dynamics of a particular region, including 
the δ15N of sinking and suspended particulate 
organic matter, skeletal δ15N may be used 
in reconstructions of local trophic and/or 
nutrient dynamics. In the Gulf of Mexico and 
the South Atlantic Bight, marked increases 
over the past 75 years in coral skeletal δ15N 
exceed 3‰, indicating there has been a higher 
contribution of terrestrial effluent to the deep 
sea (Williams et al. 2007). In the western 
tropical Pacific, multi-decadal decreases in 
δ15N values from specimens at the base of the 
euphotic zone suggest a gradually shallowing 
of the nutricline (nutrient gradient) (Williams 
and Grotolli 2010). Off Tasmania, records of 
bulk δ15N indicate relatively stable nutrient 
and trophic conditions over the past 250 
years (Sherwood et al. 2009). In instances 
where the cause of skeletal stable isotopic 
variability is ambiguous, analysis of the δ15N 
of amino acids (δ15N-AA) has emerged as a 
powerful tool to separate and independently 
track the effects of source nutrients, trophic 
transfers and microbial activity (McCarthy et 
al., 2007, Prouty et al., 2014a). Using Primnoa 
resedaeformis samples from Nova Scotia, 
Canada, Sherwood et al. (2011) pioneered 
the application of d15N-AA to deep-sea 
corals, demonstrating a nutrient regime 
shift in the western North Atlantic since the 
1970s. These studies underscore the broad 
potential for proteinaceous deep-sea corals in 
paleoceanographic studies linking nutrient 

and trophic variability to changes in global 
climate.

Phosphorous and Barium

In addition to using isotopic studies from 
proteinaceous corals as proxies for nutrient 
input to the deep sea, two elements that have 
also been used are phosphorus and barium. 
Phosphorus is a key nutrient in global primary 
productivity. It is utilized by organisms at the 
ocean surface and concentrates at depth. As 
a result, variations in seawater phosphorus 
reflect changes in surface ocean biological 
production and cycling (Montagna et al. 
2006). As a proxy for seawater phosphate, 
phosphorus to calcium (P/Ca) ratios have 
been studied in the deep-sea coral D. dianthus 
(Montagna et al. 2006, Anagnostou et al. 
2011). These global studies have shown a 
relationship between seawater phosphate 
and coral skeletal P/Ca ratios (Montagna et 
al. 2006, Anagnostou et al. 2011), suggesting 
that coral P/Ca has the potential to reconstruct 
variations in biological productivity on 
annual to decadal time-scales.  Seawater 
barium, which also displays nutrient-like 
behavior in seawater, such that coral Ba/Ca 
ratios have the potential to trace the history 
of intermediate and deep-water refractory 
(slowly decomposed) nutrients, such as silica 
(Anagnostou et al. 2011, LaVigne et al. 2011, 
Sinclair et al. 2011).

Ocean Acidification 

Ocean acidification is predicted to have 
profound implications for marine ecosystems 
partly because carbonate ions are an essential 
part of coral calcification. Changes to 
carbonate ion chemistry may particularly 
affect deep-water corals because carbonate 
levels are already low (Guinotte et al., 2006, 
Turley et al., 2007, Thresher et al., 2011). 
Instrument and modeling studies indicate 
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that seawater carbonate chemistry (carbon 
dioxide, pH, total dissolved inorganic carbon 
and alkalinity) is changing due to uptake of 
anthropogenic carbon dioxide (CO2) from 
the atmosphere. In addition, it is likely that 
there were large changes during major climate 
events of the past. One way to examine the 
response of the ocean and deep-sea corals to 
large perturbations to the carbon cycle is to 
use geochemical proxies that record pH within 
the coral skeletons. 

Boron isotopes (d11B) in biogenic carbonates 
have been established as a proxy for seawater 
pH due to preferential uptake of the borate 
ion relative to boric acid as a function pH 
(Vengosh et al. 1991, Hemming and Hanson 
1992). Experimental relationships between 
pH and d11B have been determined in both 
surface and deep-water scleractinian corals 
indicating a relationship between carbonate 
d11B and seawater pH (Reynaud et al., 2004, 
Blamart et al., 2007, Maier et al., 2009, Trotter 
et al., 2011, McCulloch et al., 2012a). However, 
d11B values higher than predicted for seawater 
pH have been observed in these studies (e.g., 
Vengosh et al., 1991, Blamart et al., 2007, 
Trotter et al., 2011). In an effort to reconcile 
these observations, scientists have found that 
aragonitic (CaCO3) forming corals (e.g., stony 
corals) are able to regulate internal pH at the 
site of calcification (McCulloch et al., 2012a, 
2012b). This may explain how some deep-sea 
corals can calcify at levels below the aragonite 
saturation horizon, which suggests deep-sea 
corals may be influenced less by decreasing 
seawater pH than originally thought 
(McCulloch et al., 2012a, 2012b; Hennige et al. 
2015). Therefore, one must be cognizant of the 
fact that the research is evolving and presently 
there are conflicting results.

Challenges 

The geochemical archives derived from deep-
sea corals have enormous potential to help 
scientists decipher and describe changes 
and variability of paleoenvironmental and 
paleoceanographic conditions through time. 
However, it is inherently difficult to determine 
the accuracy of predictive relationships in 
the coral skeleton relative to the seawater 
environment from field data. Analyses of 
deep-water taxa are constrained by the 
challenges of collecting and sampling the 
organisms and sparse environmental data 
for use in validating relationships in ambient 
deep-sea environmental conditions. Deep-sea 
coral research is still in its infancy in terms of 
understanding variability between locations, 
depth strata, as well as taxonomic orders. For 
example, Thresher et al. (2010) suggest that 
adaptation to local conditions and hence a role 
for physiology at higher taxonomic levels may 
occur in deep-sea corals. Therefore challenges 
still exist to better constrain the species-
dependent effect and to identify the causes of 
inter-species differences and intra-colony age 
and growth variability (Carreiro-Silva et al. 
2013). 

Studies employing advanced micro-analytical 
techniques have confirmed that micrometer 
scale heterogeneity influences the geochemical 
signal in deep-sea corals. Recent studies on 
stony corals show that the main differences 
in minor/trace element compositions, stable 
isotopes and organic compounds occur 
between calcification centers and fibrous 
aragonite (Gagnon et al 2007, Rollion-
Bard et al., 2009, López Correa et al., 2010). 
Biomineralization processes exerting a strong 
biological control on the skeletal formation can 
overwhelm signals caused by environmental 
conditions (Adkins et al., 2003, Gagnon et al 
2007). Systematic studies of the isotopic and 



Chapter 10 • page 13

AGE, GROWTH RATES, AND PALEOCLIMATE STUDIES IN DEEP SEA CORALS OF THE USA
• • •

trace metal variation in various biocarbonates, 
combined with detailed studies of deep-sea 
coral skeletal structure are critically needed 
to decipher the role of “vital effects” on the 
application of these proxies to paleoclimate 
studies.

IV. New Directions
There are several new directions being 
pursued in an attempt to successfully 
use deep-sea corals as reliable archives of 
seawater chemistry and oceanographic 
proxies to climate change research. Given 
that many common tracers in the carbonate 
skeletons of deep-sea corals are strongly 
affected by physiological processes during 
biomineralization (i.e., “vital effects”), there 
is a need to increase our knowledge of the 
characteristics and mechanisms of vital 
effects. In other words, how can we tease 
apart the strong biological fractionation 
that is superimposed on the environmental 
signal? Focused studies, such as addressing 
the question of how the fluid reservoir 
from which calcification occurs is linked to 
the surrounding seawater, are becoming 
increasingly important as we refine 
our understanding of the various coral 
calcification models and strategies to reduce 
bias from vital effects. The introduction of 
micro-analytical sampling techniques, such as 
micromilling, ion microprobes, laser-ablation 
and highly focused synchrotron radiation, 
has made it possible to investigate coral 
intraskeletal variability of trace element and 
stable isotopic compositions directly related 
to the ultra-structure of the skeleton (Rollion-
Bard et al., 2009, Thresher et al., 2009, 2010, 
Case et al 2010, López Correa et al., 2010, 
Sinclair et al., 2011). Therefore, we need to 
couple these high-resolution measurements to 
increase knowledge of present day processes 
affecting the coral communities.

As previously mentioned, from a 
compositional perspective, proteinaceous 
corals are somewhat analogous to sediment 
traps since they depend on surface-derived 
particulate organic matter. Therefore, age 
and growth studies should be accompanied 
by sediment trap studies that can clarify how 
the elemental and isotopic composition of 
particulate organic matter (i.e., food source) is 
captured or represented in the deep-sea coral 
skeletal chemistry. Additional focused studies 
should include the collection of appropriate 
coral specimens along with food sources and 
particulate and dissolved nutrients from the 
same location to clarify our understanding 
of feeding habits, prey type, timing and 
seasonality, as well as the impact of microbial 
activity of food sources on geochemical 
signatures encoded in corals. Examination of 
new specimens from different nutrient and 
oceanographic regimes, integration of isotopic 
and trace elemental geochemical signals, and 
use of new techniques such as the δ15N of 
skeletal amino acids will aid in understanding 
past nutrient and trophic dynamics in the 
oceans, including reconstructions of source 
nitrogen variability and phytoplankton 
trophic and community structure.

A paramount challenge to the application 
and utilization of paleoenvironmental 
reconstructions using deep-sea corals is 
the precision, fidelity, and resolution of 
independently derived age-models (e.g., 
Komugabe et al., 2014), regardless of 
whether they are radiometric or based on 
sclerochronology. A particularly challenging 
time period is the ‘near instrumental’ period 
of the last several hundred years where 
radiocarbon is insensitive and sample 
size requirements make Th/U, in general, 
untenable for a well resolved chronology. 
Anthropogenic tracers with known or 
reconstructed emission histories (e.g., Pb, 
Pb-isotopes, As, Cd, Hg) and proxies of 



AGE, GROWTH RATES, AND PALEOCLIMATE STUDIES IN DEEP SEA CORALS OF THE USA
• • •

Chapter 10 • page 14

disturbance events of known age may provide 
regional tie points (e.g., Schuster et al., 2002, 
Kelly et al., 2009) that could be coupled 
to radiometric chronologies. For example, 
Andrews et al. (2009) applied a refined lead-
210 dating technique to yield relatively high-
precision growth rate and age determinations 
for bamboo corals living during the last 100 
years. Inter-disciplinary studies that use 
multiple chronological approaches with cross-
validation of sclerochronological features are 
also necessary. Validation of the timing and 
cause of sclerochronological features have the 
potential to refine chronologies. Advances in 
deep-sea coral research continue to highlight 
the growing importance of deep-sea corals as 
reliable marine archives of climate change and 
other environmental cycles. Like their shallow-
dwelling counterparts, deep-sea corals have 
also proven to be important archives of past 
ocean variability. While challenges still exist 
to providing reliable, reproducible records of 
climate variability, recent advances provide new 
opportunities and directions to close this gap.

Information on growth rate and life span of 
deep-sea corals is essential for conservation 
and management because the life history of 
these prominent organisms is either poorly 
understood or unknown. Validated age 
and growth of these organisms is the most 
fundamental information on susceptibility 
to disturbance or removal. Early estimates 
of age and longevity have been roughly 
determined, but more advanced techniques 
hold promise in not only determining 
longevity, but variations in growth through 
ontogeny (Andrews et al. 2009, Roark et al. 
2009, Carriero-Silva et al. 2013). Assessment 
of the vulnerability of these long-lived, 
habitat-forming organisms to both natural and 
anthropogenic perturbations is of paramount 
importance because recovery may involve 
life history aspects that are not currently 

considered. Once some or many of these 
coral species are lost to damage or removal, 
many are not likely to return within our 
lifetime. Even in terms of minor damage, some 
arborescent corals have shown little to no 
recovery in nearly a decade of no disturbance 
(Krieger 2002, Williams et al. 2010). In 
addition, there is evidence that energy may 
be focused on regenerative growth within the 
broken colony in lieu of reproductive effort 
(Waller and Tyler 2005). For the longest-lived 
members of the deep-sea corals, perhaps it is 
prudent to take on a perspective of value in 
terms of world heritage, analogous to ancient 
terrestrial forests.
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